

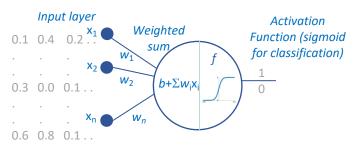
Reservoir Computing with Bacteria

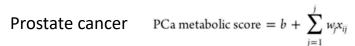
Jean-Loup Faulon – <u>Jean-Loup.Faulon@inrae.fr</u> – <u>https://jfaulon.com</u>

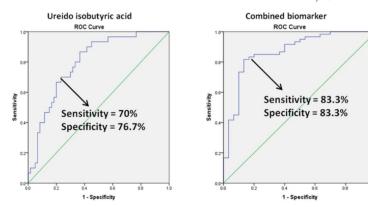
Engineering biological information processing devices

TRAINING THE NETWORK

Perceptron weights (w_i) are learned to increase classifier accuracy







- Zang, et al. PLoS One 2013 and J Proteome Res. 2014
- Shen B, et al. *Cell*. 2020

USING THE TRAINED NETWORK

To perform a diagnostic:

- Quantify a panel of biomarkers (metabolites) on clinical samples (using metabolomics)
- Feed measured biomarkers concentrations (x_i) to

$$f(b+\Sigma w_i x_i)$$

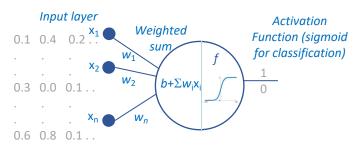
- Is it possible to avoid biomarker concentration measurements?
 - Engineer the trained network in vitro or in vivo and directly use it on clinical samples

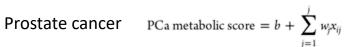
Jean-Loup Faulon, October 2023 2

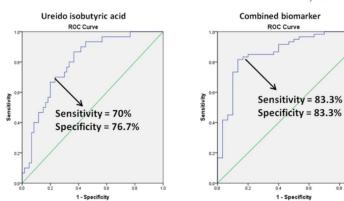
Engineering a metabolic information processing device: the concept

TRAINING THE NETWORK

Perceptron weights (w_i) are learned to increase classifier accuracy



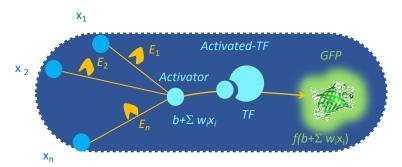




- Zang, et al. PLoS One 2013 and J Proteome Res. 2014
- Shen B, et al. *Cell*. 2020

ENGINEERING THE TRAINED NETWORK

Need to actuate weighted sum and activation function



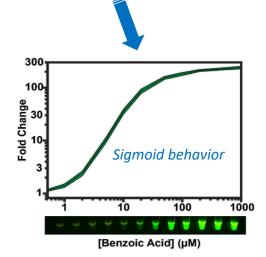
Enzymatic transformation Reporter gene

In theory (Michaelis-Menten) when $x_i \ll [E_i]$:

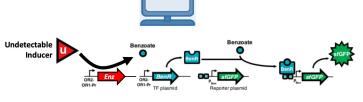
$$d[p] = \sum k_i [E_i] x_i dt$$

$$w_i = k_i [E_i]$$

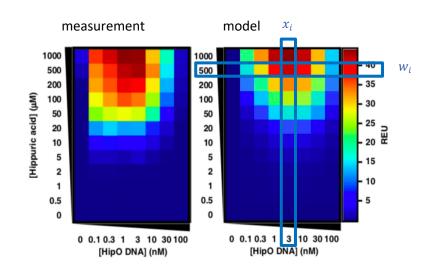
where k_i is a kinetics
constant



Engineering a metabolic information processing device: the concept

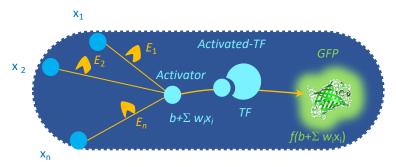


$$\begin{split} \frac{dbenzoate}{dt} &= enz * \frac{k_{cat} * inducer}{inducer + K_M} \\ \frac{dinducer}{dt} &= -enz * \frac{k_{cat} * inducer}{inducer + K_M} \\ TF_{activated} &= TF * \frac{benzoate}{benzoate + K_d^{inducer}} + 0.0005 \\ \epsilon &= \frac{TF_{activated}}{TF_{activated} + K_d^{activated}} \text{ for BenR} \\ \epsilon &= 1 \text{ for constitutive expression} \\ \frac{dmRNA}{dt} &= \gamma * n * \epsilon \frac{x}{x + \chi} * \frac{K_{tox}}{K_{tox} + tox} * \frac{R_{mRNA}}{R_{mRNA} + K_{mRNA}} - \delta * mRNA \\ \frac{dprot}{dt} &= \pi * mRNA * \frac{y}{y + k} * \frac{K_{tox}}{K_{tox} + tox} - \lambda * prot \end{split}$$



ENGINEERING THE TRAINED NETWORK

Need to actuate weighted sum and activation function



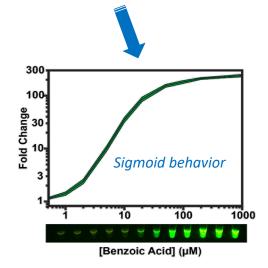
Enzymatic transformation Reporter gene

In theory (Michaelis-Menten) when $x_i \ll [E_i]$:

$$d[p] = \sum k_i [E_i] x_i dt$$

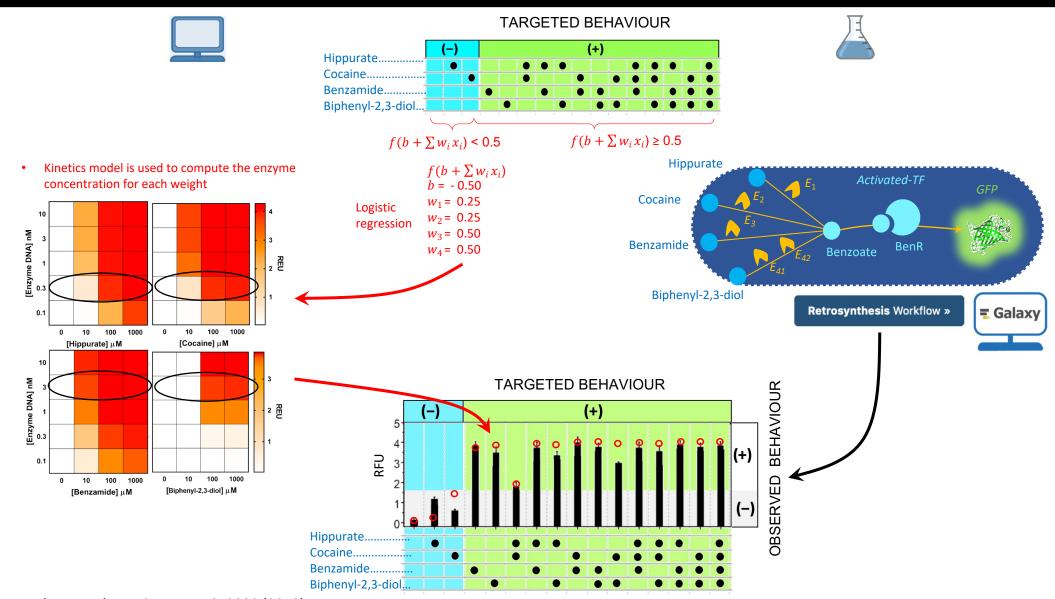
$$w_i = k_i [E_i]$$

where k_i is a kinetics
constant



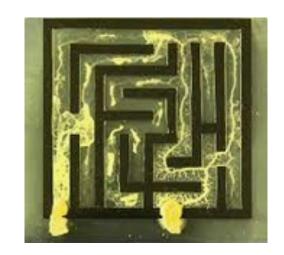
Voyvodic, P.L., Pandi, A., Koch, M. et al. Nat Commun 10, 1697 (2019).

Engineering a metabolic information processing device in vitro

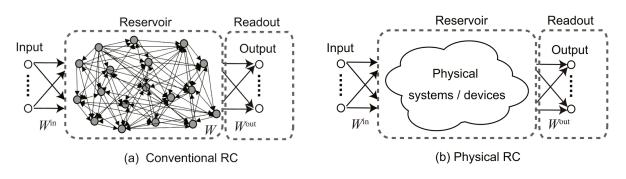


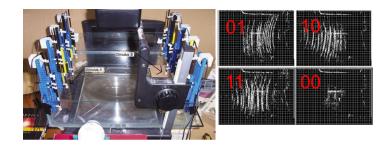
Engineering biological information processing devices in vivo?

• Can we divert native metabolism to handle problems that are usually solved *in silico*?



Ability of physical, chemical or biological devices to solve problems is studied in AI with Reservoir Computing (RC)





Tanaka G. et al. *Neural Networks* **115**, 100 (2019)

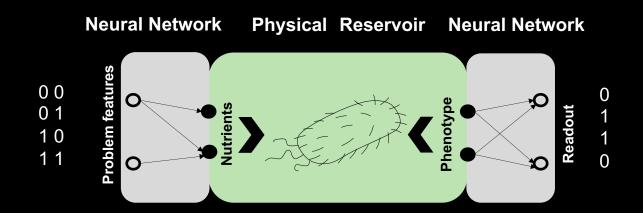
Liquid state machine (2002)

E. coli Reservoir Computer (E. coli RC)

Can we exploit *E. coli* native metabolism to build an *E. coli* RC to solve computational problems?

How complex a problem can *E. coli* RC solve?

Can we find practical uses of *E. coli* RC?

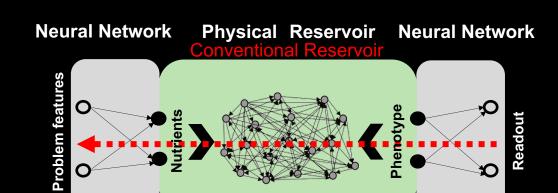


E. coli Reservoir Computer (E. coli RC)

Can we exploit *E. coli* native metabolism to build an *E. coli* RC to solve computational problems?

How complex a problem can *E. coli* RC solve?

Can we find practical uses of *E. coli* RC?



gradient backpropagation

Conventional Reservoir should:

- accurately reproduce phenotype for different media composition
- enable gradient backpropagation

The reservoir

GEnome-scale Metabolic Model (GEM/FBA)

 $Max(v_{biomass})$

Subjected to contraints:

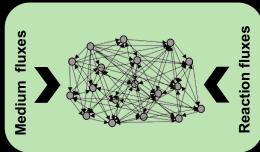
$$SV = 0$$

$$0 \leq V \leq V_{in}$$

where

- -V =set of all reaction fluxes
- -S = stochiometric matrix
- $-V_{in}$ = uptake medium fluxes upper bounds

Conventional Reservoir



The reservoir

GEnome-scale Metabolic Model (GEM/FBA)

 $Max(v_{biomass})$

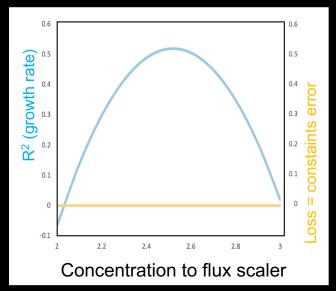
Subjected to contraints:

$$SV = 0$$
$$0 \le V \le V_{in}$$

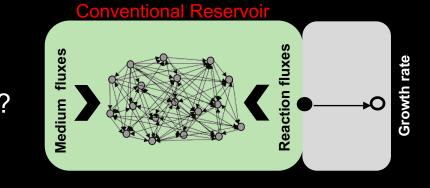
where

- -V = set of all reaction fluxes
- -S = stochiometric matrix
- $-V_{in}$ = uptake medium fluxes upper bounds

GEM/FBA growth rates vs. measured growth rate in E. coli MG1655 for 1 to 4 nutrients added to M9



Medium concentrations



Conventional Reservoir should:

 accurately reproduce phenotype for different media composition

Building an E. coli RC to increase mechanistic model predictability

Linear Program solved using Simplex algorithm not compatible with gradient propagation GEnome-scale Metabolic Model (GEM/FBA)

 $Max(v_{biomass})$

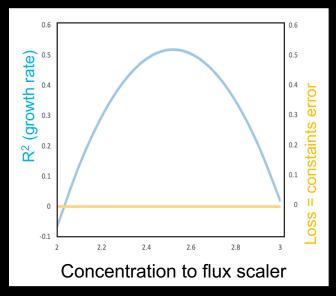
Subjected to contraints:

$$SV = 0$$
$$0 \le V \le V_{in}$$

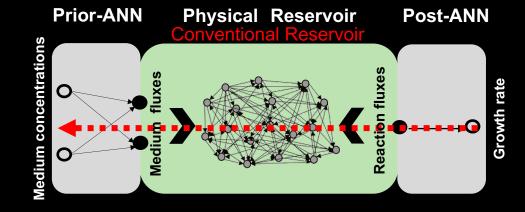
where

- -V =set of all reaction fluxes
- -S = stochiometric matrix
- $-V_{in}$ = uptake medium fluxes upper bounds

GEM/FBA growth rates vs. measured growth rate in E. coli MG1655 for 1 to 4 nutrients added to M9



gradient backpropagation to find mapping between medium concentrations and uptake fluxes

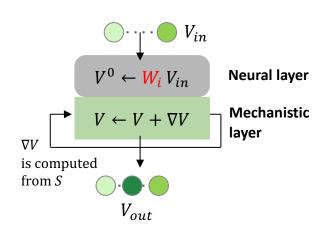


Conventional Reservoir should:

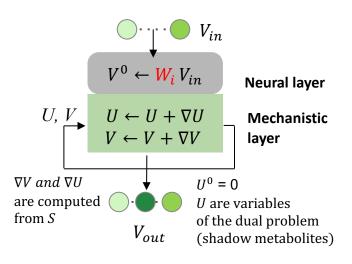
- accurately reproduce phenotype for different media composition
- enable gradient backpropagation

AMNs (Artificial Metabolic Networks): gradient backpropagation compatible methods surrogating FBA

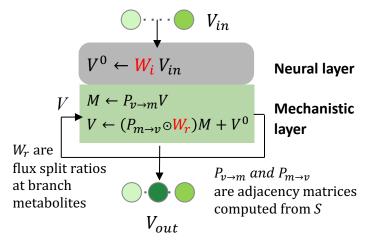
Physics informed neural network (PINN)



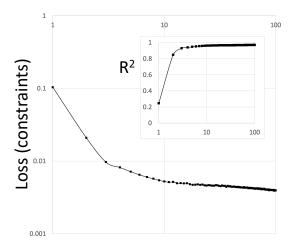
Hopfield's network

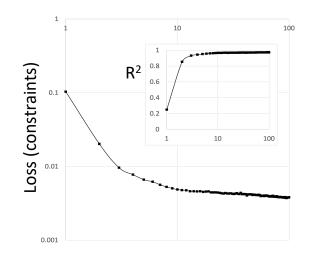


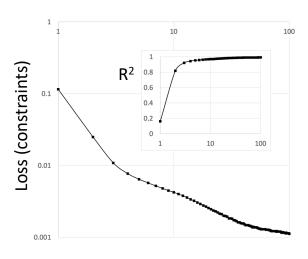
Graph neural network (GNN)



Trained on GEM/FBA (C&brooy) calculated growth rates with E. coli iML1515 model for 1000 different media (M9 + random combinations of nutrients among sugars, nucleotides, amino acids)

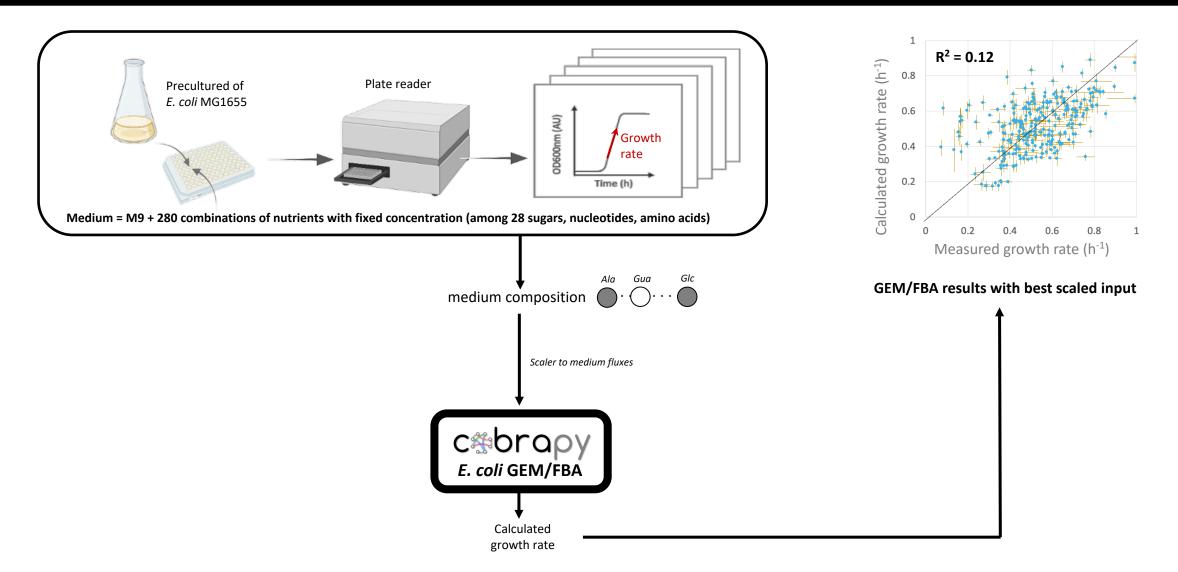




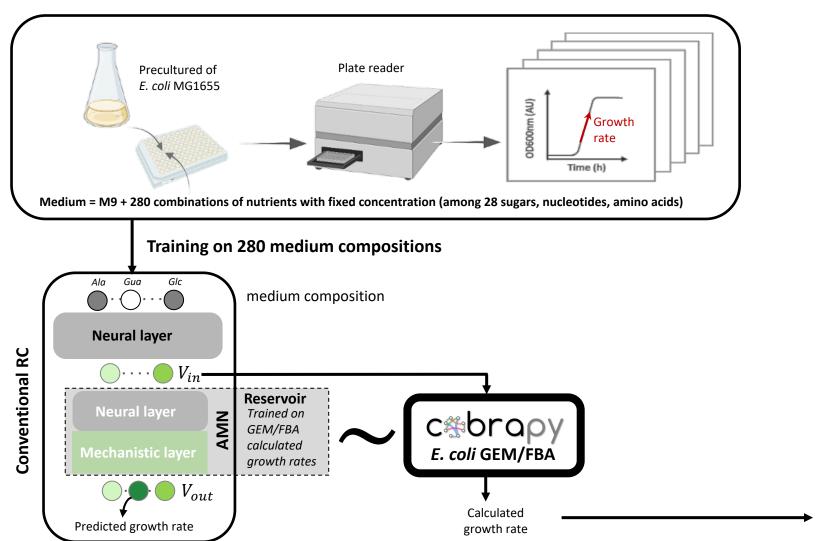


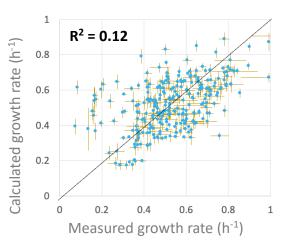
Faure L. et al. Nat Commun 14, 4669 (2023)

AMNs can be used as reservoir in RC to improve mechanistic model predictability

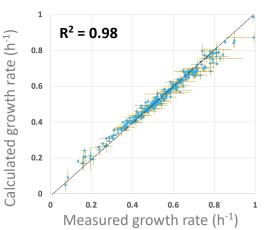


AMNs can be used as reservoir in RC to improve mechanistic model predictability



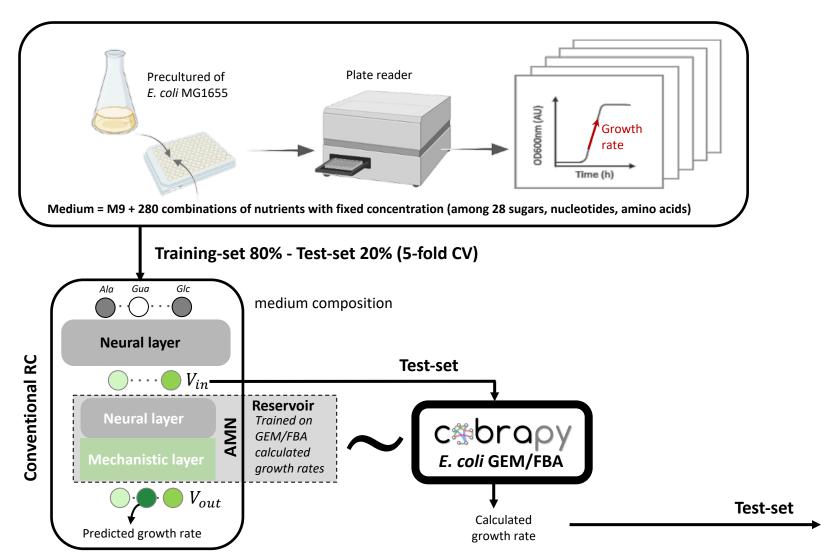


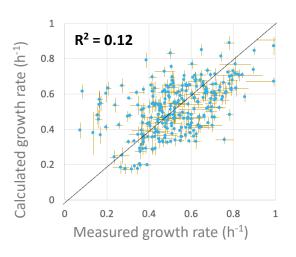
GEM/FBA results with best scaled input



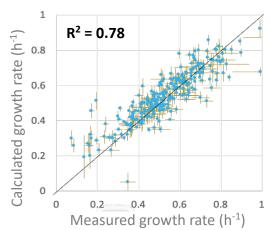
GEM/FBA results with reservoir inputs

AMNs can be used as reservoir in RC to improve mechanistic model predictability



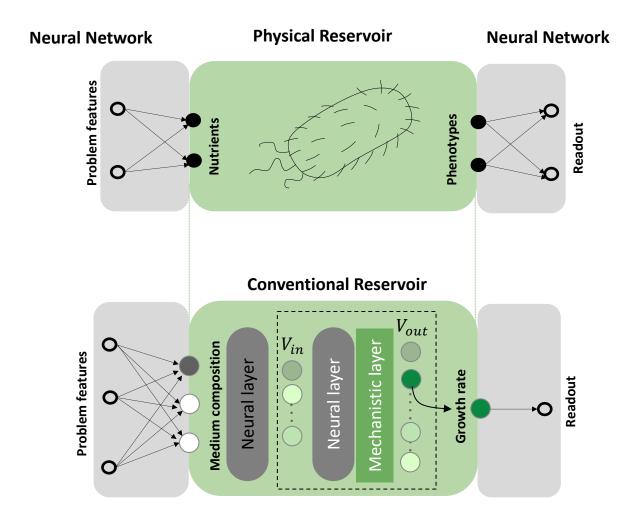


GEM/FBA results with best scaled input

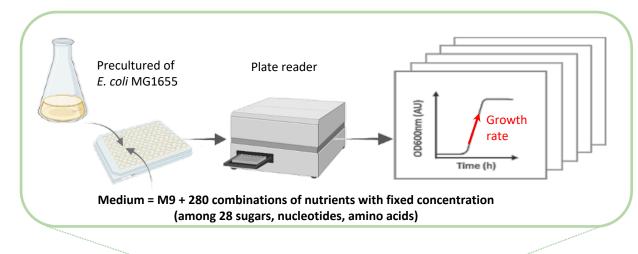


GEM/FBA results with reservoir inputs

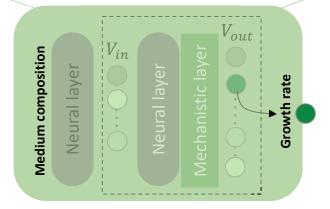
Can E. coli RC be used to solve a classical machine learning problem?



Building an E. coli RC to solve a regression problem

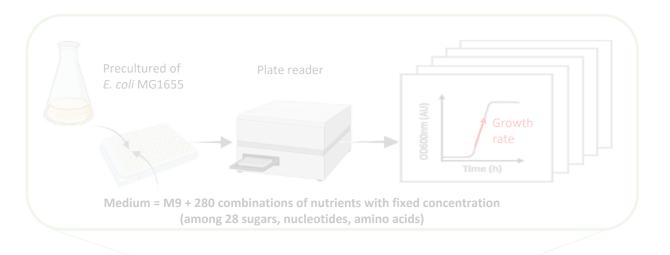


Conventional Reservoir



Using E. coli RC to solve a regression problem

Example of regression problem: OpenML 'Energy Efficiency' dataset (768 instances, X = 8 features, y = % efficiency)



Compactness 0.98	Surface Area 514.5	Orientation 3	Problem features	0	Medium composition		Re	eservoir	Growth rate	→o	Readout	% efficiency 15.55	
				Glc 1	Xyl 0	Succ 1	Trp		μ 0.71				

• Mollet, B., Ahavi P. et al. Lecture Notes in Computer Science (2025)

Using E. coli RC to solve a regression problem

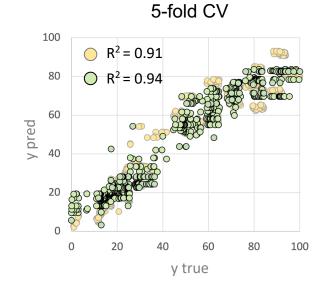
OpenML

A worldwide machine learning lab

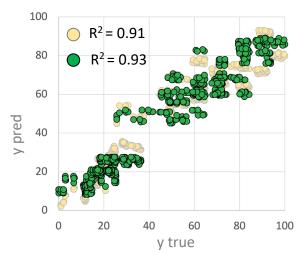
Example of regression problem: OpenML 'Energy Efficiency' dataset (768 instances, X = 8 features, y = % efficiency)

Conventional RC

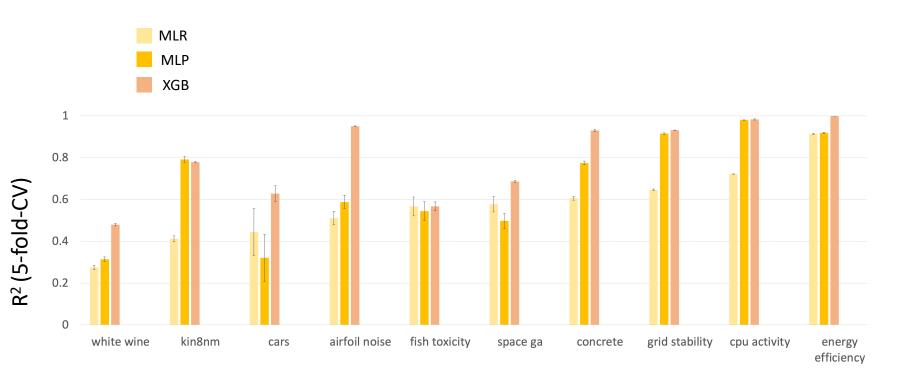
Physical RC



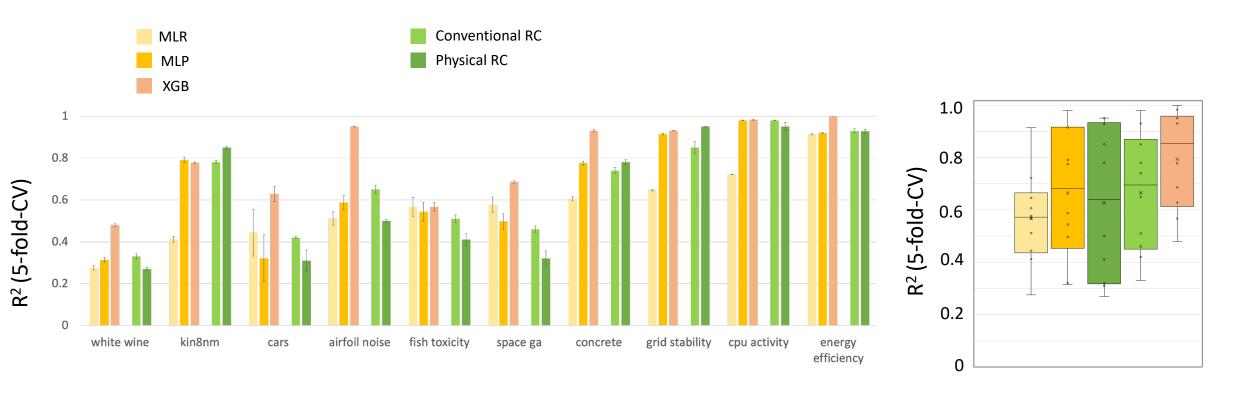
Compactness	Surface Area	Orientation				
0.98	514.5	3				



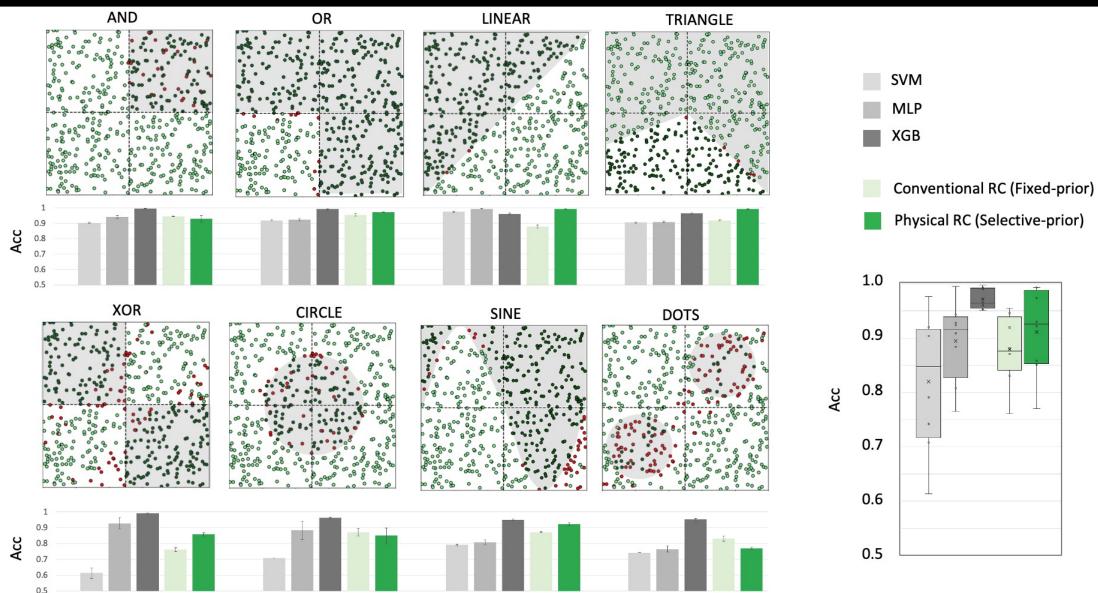
10 OpenML regression problems of increasing difficulty



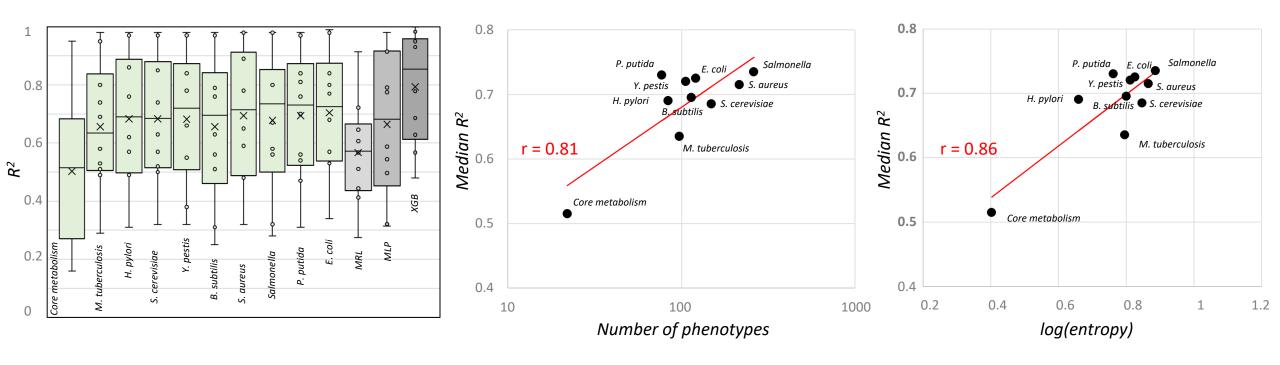
10 OpenML regression problems of increasing difficulty



Using E. coli RC to solve classification problems



Relationship between GEM RC capacity to solve ML problems and phenotype diversity



- 10 AMN reservoirs trained on 10 GEMs
- Growth rates were acquired running FBA for 10k different media composition (selected at random among 28 sugars, amino and nucleic acids)
- Box plots are for 10 regression OpenML problems

 Number of phenotype is the number of different flux distributions calculated running FBA for 10k different media composition $H = \sum_{i} p_{i} \log_{2}(p_{i})$ where p_{i} is the probability of appearance of phenotype i

Can E. coli RC solve a concrete classification problem?

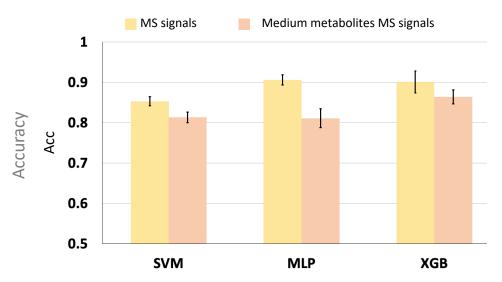
The problem:

- Blood sample are collected for Covid-19 patients once they enter the hospital
- Metabolomics analyses are carried out on the samples
- Can we predict from the analyses if the disease outcome will be severe or moderate?

CHU Grenoble-Alpes cohort (training set):

- 81 patients
- 624 molecules detected (56 *E. coli* medium molecules)
- severe (31) moderate (50)

Classifier performances (20-fold CV results)



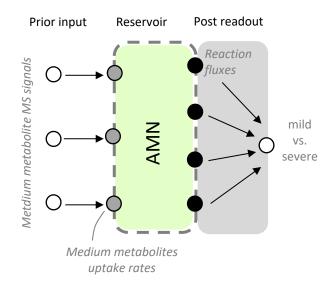
Accuracy = 0.84 in Shen et al. Cell 2020; 182(1): 59-72

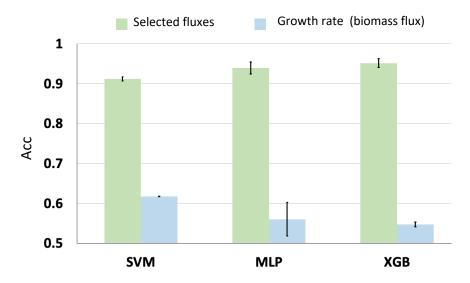
Using E. coli RC for classification

The problem:

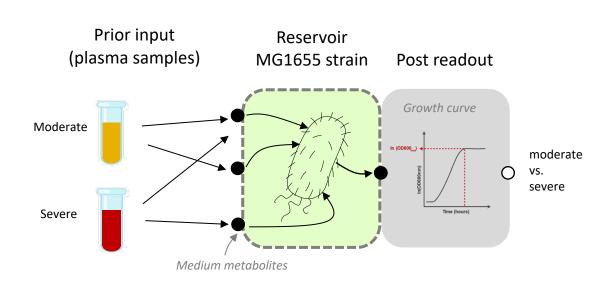
- Blood sample are collected for Covid-19 patients once they enter the hospital
- Metabolomics analyses are carried out on the samples
- Can we predict from the analyses if the disease outcome will be severe or moderate?
- Can we use an E. coli RC grown on the patient's sample to predict if the disease outcome will be severe or moderate?

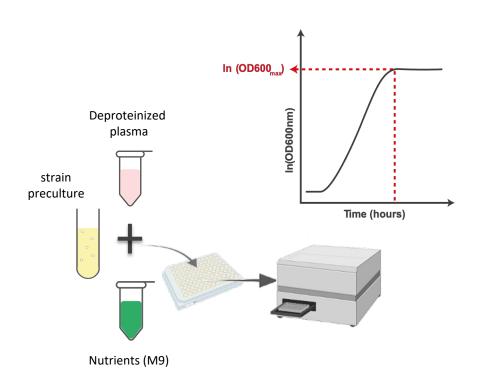
Conventional RC to predict disease outcome from phenotype





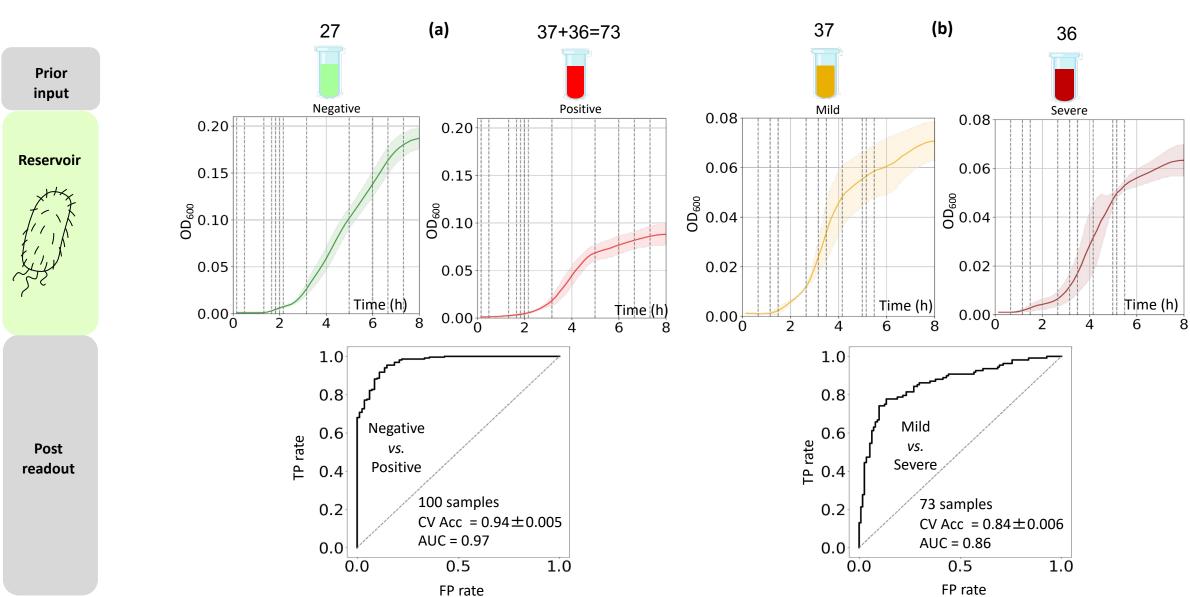
Building an E. coli physical RC for classification





- > According to conventional RC, differences of nutrients concentration in the plasma should result in different phenotype
- > Build an E. coli Physical RC to predict disease outcome from growth curve

Benchmarking E. coli physical RC for classification



Ahavi P et al. bioRxiv DOI: 10.1101/2024.09.12.612674 (2025)

Perspective: a new concept in synthetic biology

- Decades of research and development in Synthetic Biology to build bottom-up computing devices (digital, analog, neural,...)... but many difficulties
- Most devices were inspired from natural biological networks: one should to consider building devices top-down, i.e. exploiting/modifying hosts rather than plugging orthogonal devices

Acknowledgments

AMN SynBioDiag

B-BEST

Paul Ahvi

Hoang

Mollet

Léon **Faure**

Amir Pandi

Koch

Audrey Le Gouellec

Jérôme Bonnet

Wolfram Liebermeister

