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To perform a diagnostic:

• Quantify a panel of biomarkers (metabolites) on clinical 
samples (using metabolomics)

• Feed measured biomarkers concentrations (xi) to

• Is it possible to avoid biomarker concentration 
measurements?

Ø Engineer the trained network in vitro or in vivo and 
directly use it on clinical samples
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• Zang, et al. PLoS One 2013 and J Proteome Res. 2014
• Shen B, et al. Cell. 2020
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ENGINEERING THE TRAINED NETWORK

Enzymatic transformation Reporter gene

Sigmoid behavior

Need to actuate weighted sum and activation function

! " = Σ %! &! '! !(

In theory (Michaelis-Menten) 
when  'i << [Ei] :

wi = %! &!
where %! is a kinetics 
constant
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Engineering a metabolic information processing device: the concept
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Sigmoid behavior
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•  Voyvodic, P.L., Pandi, A., Koch, M. et al. Nat Commun 10, 1697 (2019).

Engineering a metabolic information processing device: the concept
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• Pandi A., Koch M. et al. Nat Commun 10, 3880 (2019)
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• Can we divert native metabolism to handle problems that are usually solved in silico?

• Ability of physical, chemical or biological devices to solve problems is studied in AI with Reservoir Computing (RC)

Tanaka G. et al. Neural Networks 115, 100 (2019)

Engineering biological information processing devices in vivo?
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E. coli Reservoir Computer (E. coli RC)

Can we exploit E. coli native metabolism to build an E. coli RC to solve computational problems?

How complex a problem can E. coli RC solve?

Can we find practical uses of E. coli RC?
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gradient backpropagation 

Conventional Reservoir
Physical  Reservoir
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Can we exploit E. coli native metabolism to build an E. coli RC to solve computational problems?

How complex a problem can E. coli RC solve?

Can we find practical uses of E. coli RC?

N
ut

rie
nt

s

Ph
en

ot
yp

e Conventional Reservoir should:
• accurately reproduce phenotype for 

different media composition
• enable gradient backpropagation 

E. coli Reservoir Computer (E. coli RC)
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Subjected	to	contraints:
	 S	G = 0
					0	≤ G ≤ G!'

where
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GEM/FBA growth rates vs. measured 
growth rate in E. coli MG1655 for 1 to 4 
nutrients added to M9
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gradient backpropagation
to find mapping between 
medium concentrations 
and uptake fluxes 
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Max	(A"!#$%&&)
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where
−	G	=	set	of	all	reaction	fluxes
−	S		=	stochiometric	matrix
−G!'	=	uptake	medium	fluxes	upper	bounds

Prior-ANN

Building an E. coli RC to increase mechanistic model predictability 
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AMNs (Artificial Metabolic Networks): gradient backpropagation 
compatible methods surrogating FBA
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Trained on GEM/FBA (                       ) calculated growth rates with E. coli iML1515 model for 1000 different media (M9 + random combinations of nutrients among 
sugars, nucleotides, amino acids)

• Faure L. et al. Nat Commun 14, 4669 (2023)



Jean-Loup Faulon, October 2023   13

AMNs  can be used as reservoir in RC to improve mechanistic 
model predictability

Plate readerPrecultured of 
E. coli MG1655

Medium = M9 + 280 combinations of nutrients with fixed concentration (among 28 sugars, nucleotides, amino acids)

GEM/FBA results with best scaled input
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• Faure L. et al. Nat Commun 14, 4669 (2023)
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Plate readerPrecultured of 
E. coli MG1655
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Growth 
rate

Plate readerPrecultured of 
E. coli MG1655

Medium = M9 + 280 combinations of nutrients with fixed concentration (among 28 sugars, nucleotides, amino acids)

GEM/FBA results with reservoir inputs
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Can E. coli RC be used to solve a classical machine learning problem?
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Building an E. coli RC to solve a regression problem

Growth 
rate
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Example of regression problem : OpenML ‘Energy Efficiency’ dataset (768 instances, X = 8 features, y = % efficiency)
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Using E. coli RC to solve a regression problem

• Mollet, B., Ahavi P. et al. Lecture Notes in Computer Science (2025)
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Example of regression problem : OpenML ‘Energy Efficiency’ dataset (768 instances, X = 8 features, y = % efficiency)
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Using E. coli RC to solve a regression problem
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• Mollet, B., Ahavi P. et al. Lecture Notes in Computer Science (2025) and Ahavi P et al. bioRxiv DOI: 10.1101/2024.09.12.612674 (2025)

5-fold CV
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Using E. coli RC to solve many regression problems

10 OpenML regression problems of increasing difficulty
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• Mollet, B., Ahavi P. et al. Lecture Notes in Computer Science (2025) and Ahavi P et al. bioRxiv DOI: 10.1101/2024.09.12.612674 (2025)
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Using E. coli RC to solve many regression problems

10 OpenML regression problems of increasing difficulty
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• Mollet, B., Ahavi P. et al. Lecture Notes in Computer Science (2025) and Ahavi P et al. bioRxiv DOI: 10.1101/2024.09.12.612674 (2025)
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Using E. coli RC to solve classification problems

• Ahavi P et al. bioRxiv DOI: 10.1101/2024.09.12.612674 (2025)
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• 10 AMN reservoirs trained on 10 GEMs
• Growth rates were acquired running FBA for 

10k different media composition (selected at 
random among 28 sugars, amino and nucleic 
acids)

• Box plots are for 10 regression OpenML 
problems

Relationship between GEM RC capacity to solve ML problems and phenotype diversity
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• Number of phenotype is the number 
of different flux distributions 
calculated running FBA for 10k 
different media composition

• U = ∑( "( WXY. "(  where "( is the 
probability of appearance of 
phenotype Z

• Ahavi P et al. bioRxiv DOI: 10.1101/2024.09.12.612674 (2025)
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Can E. coli RC solve a concrete classification problem ?

The problem:

• Blood sample are collected for Covid-19 patients 
once they enter the hospital

• Metabolomics analyses are carried out on the 
samples

• Can we predict from the analyses if the disease 
outcome will be severe or moderate?

CHU Grenoble-Alpes cohort (training set):

• 81 patients 
• 624 molecules detected (56 E. coli medium molecules)
• severe (31) –  moderate (50)

Classifier performances (20-fold CV results)
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Accuracy = 0.84 in Shen et al. Cell 2020; 182(1): 59–72 
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c

MS signals Medium metabolites MS signals

• Ahavi P et al. bioRxiv DOI: 10.1101/2024.09.12.612674 (2025)
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Using E. coli RC for classification

The problem:

• Blood sample are collected for Covid-19 patients 
once they enter the hospital

• Metabolomics analyses are carried out on the 
samples

• Can we predict from the analyses if the disease 
outcome will be severe or moderate?

• Can we use an E. coli RC grown on the patient’s 
sample to predict if the disease outcome will be 
severe or moderate ?
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• Ahavi P et al. bioRxiv DOI: 10.1101/2024.09.12.612674 (2025)
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Building an E. coli physical RC for classification

Ø According to conventional RC, differences of nutrients concentration in the plasma should result in different phenotype
Ø Build an E. coli Physical RC to predict disease outcome  from growth curve
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• Ahavi P et al. bioRxiv DOI: 10.1101/2024.09.12.612674 (2025)
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Benchmarking E. coli physical RC for classification
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• Ahavi P et al. bioRxiv DOI: 10.1101/2024.09.12.612674 (2025)
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Perspective: a new concept in synthetic biology

o Decades of research and development in Synthetic Biology to build bottom-up computing 
devices (digital, analog, neural,…)… but many difficulties

o Most devices were inspired from natural biological networks: one should to consider building 
devices top-down, i.e. exploiting/modifying hosts rather than plugging orthogonal devices
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