> Integrating Human Gut Microbiome Data at Scale: From Individuals to Multi-Layered Features in Clinical and Nutritional Studies.

Julien Tap
INRAE MICALIS
AI SCHOOL 2025

Wolfgang Huber @wolfgangkhuber · 8 h

I think we should stop using the term 'biologists' for people who cannot use computer code.

8

14

39

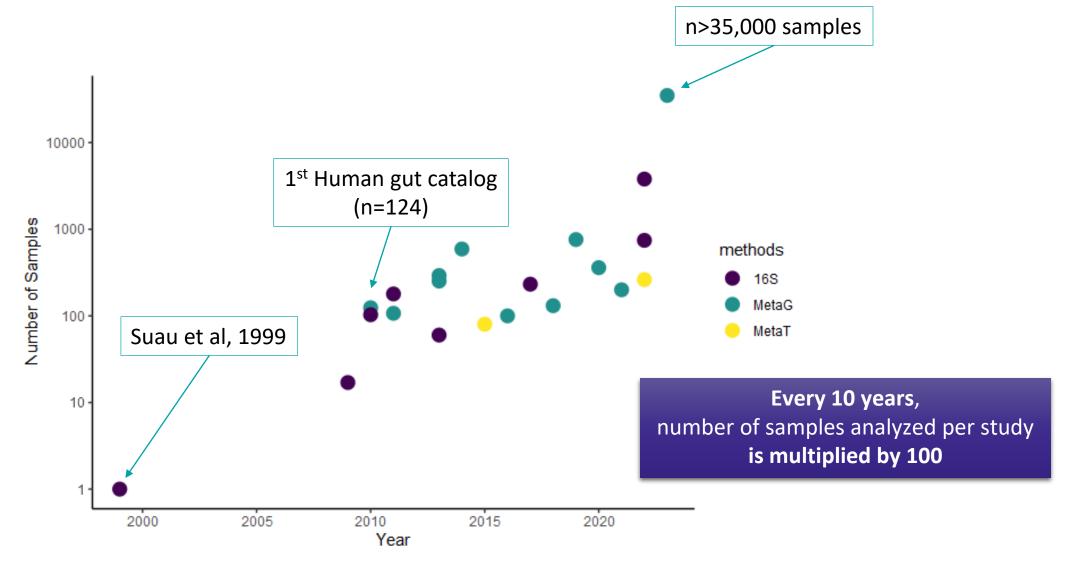
TECH

Accenture plans on 'exiting' staff who can't be reskilled on Al amid restructuring strategy

PUBLISHED FRI, SEP 26 2025-7:18 AM EDT | UPDATED SAT, SEP 27 2025-8:33 AM EDT

Sawdah Bhaimiya

> Gut microbiome studies: exponential growth of sample numbers



> Human gut microbiota analysis in a nutshell

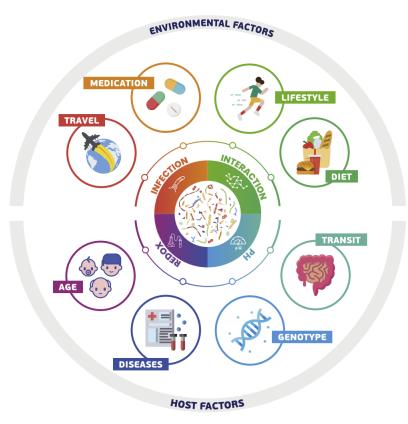


Fig. 1 Overview of host and environmental factors that are associated with gut microbiota variation, in addition to intrinsic factors.

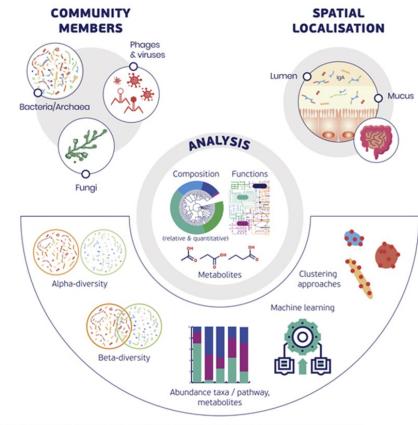
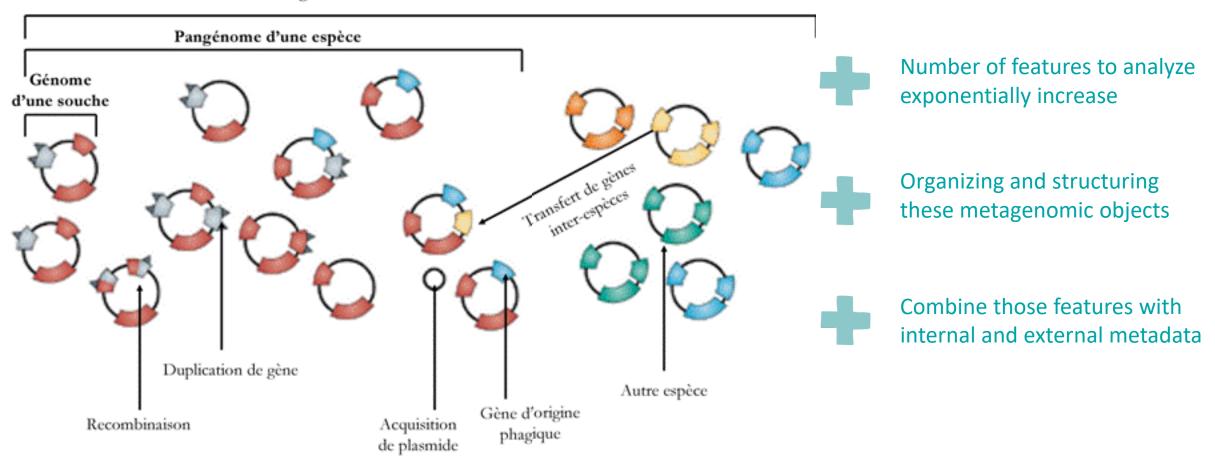


Fig. 2 Overview of the study of gut microbiota, including community members, spatial localization, and analysis.

> Microbiome omics data challenges

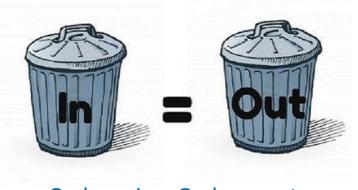
Métagénome d'une communauté bactérienne



> The metagenomic approach

IT'S EASY!



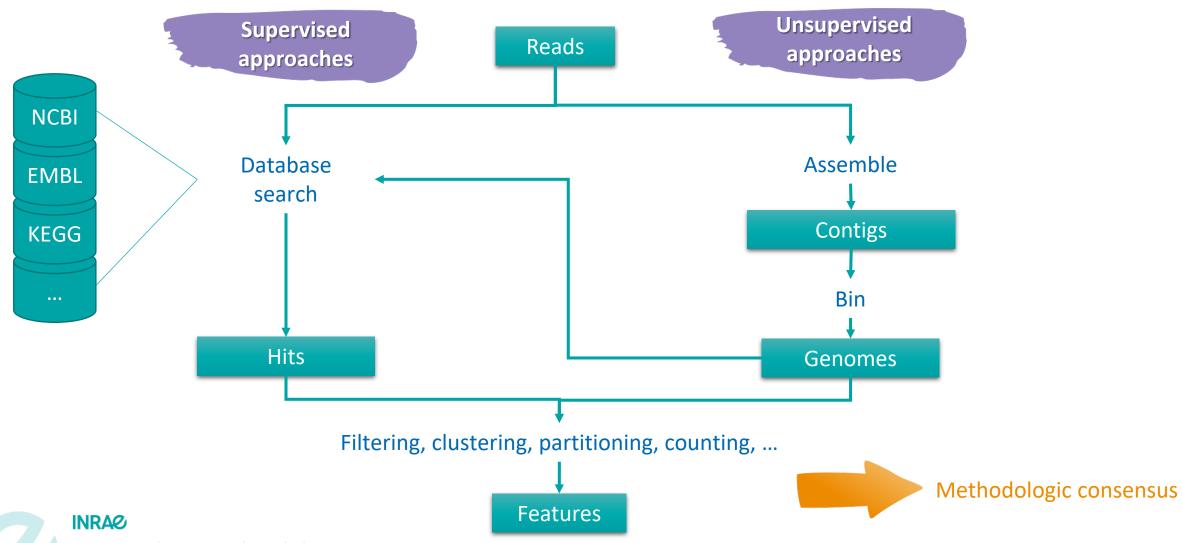


Garbage in = Garbage out

Each stage of the process can be affected by the protocol used

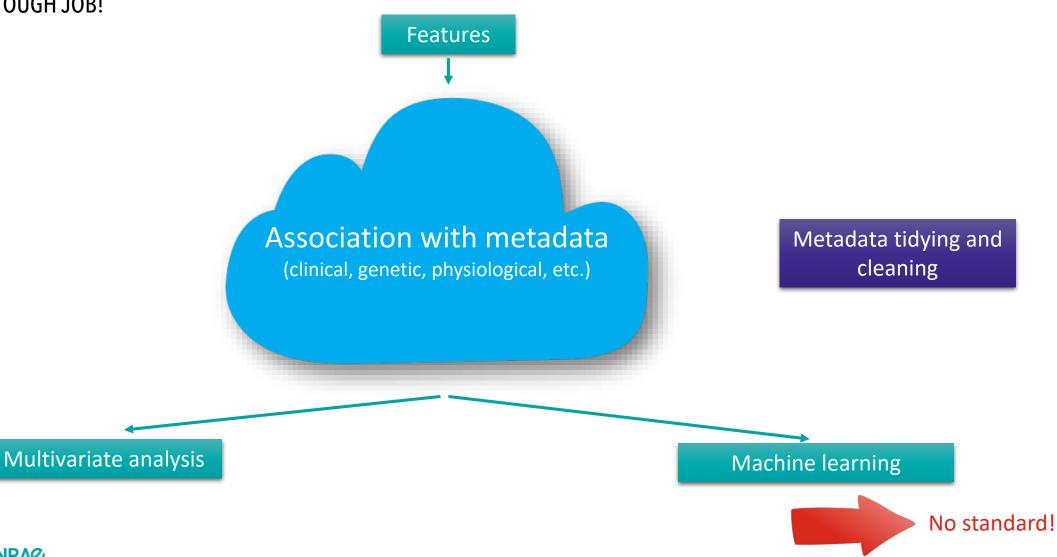
> Metagenomic analysis

IT'S COMPLEX!

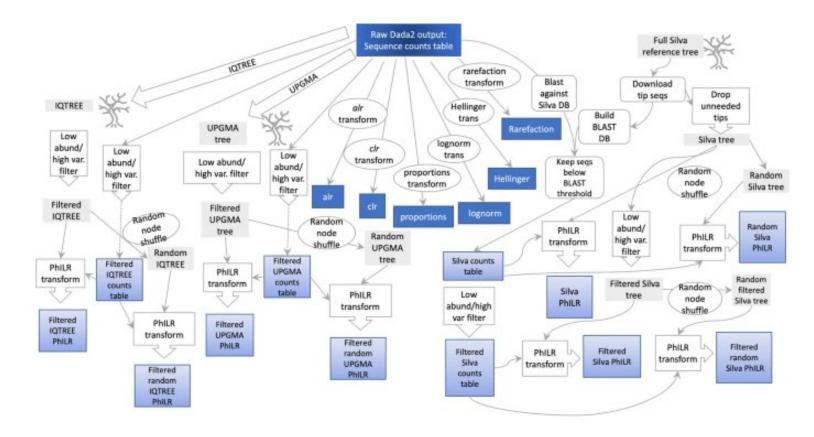


> Statistical analysis in metagenomics

IT'S A TOUGH JOB!



> Tools Benchmarks



"Overall, we found that the compositionally aware data transformations such as alr, clr, and ilr (PhILR) performed generally slightly worse or only as well as compositionally naïve transformations."

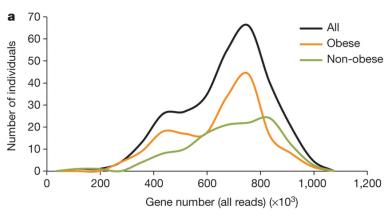
> Tools Benchmarks

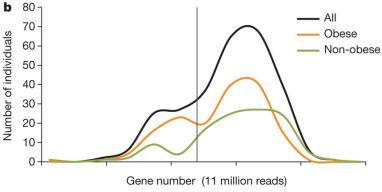
Summary of the compared DAA methods.						
Method	Normalization strategy	Performs log (or CLR) transformation	Model	Can incorporate covariates	Provides CIs	Typical run-time
ALDEx2	CLR	х	Linear	х	x	30 s
ANCOM-BC2	Bias correction	х	Linear	х	x	20 s
corncob	TSS		Beta-binomial	х	x	10 s
DESeq2	RLE		Negative binomial	x	x	7 s
edgeR	TMM		Negative binomial	х		0.5 s
fastANCOM	Reference taxa	х	Linear	х	x	0.01 s
LDM	TSS		Linear	х		30 s
limma voom	TMM	х	Linear	х	x	0.07 s
LinDA	Bias correction	х	Linear	х	x	0.2 s
LogR	-		Binary logistic	х	x	0.6 s
MaAsLin2/t-test	TSS	х	Linear	х	x	2 s
metagenomeSeq	CSS	х	Linear		x	0.8 s
ORM/Wilcoxon	TSS		Ordinal (proportional odds)	х	x	3 s
ZicoSeq	Reference taxa		Linear	х		20 s

Overall, the best performance was obtained by analyzing TSS normalized counts, i.e. relative abundances, with a nonparametric method (ORM/Wilcoxon), log-transformed TSS normalized counts with the t-test/linear regression (MaAsLin2/t-test), or the presence/absence of taxa with logistic regression (LogR).

> The association of metagenomic data with clinical studies

Gene richness

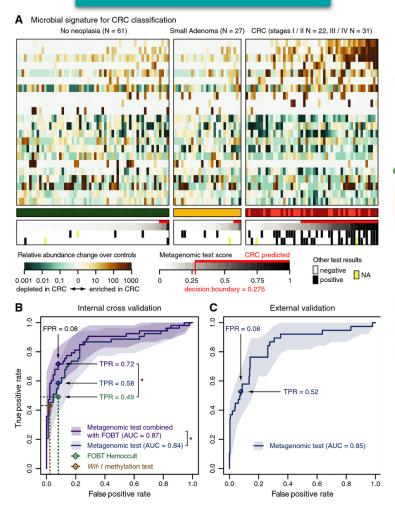




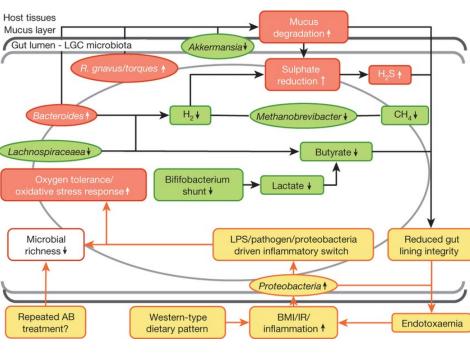
INRAe

Human Gut Microbiome Data at Scale - IA School

Biomarkers from machine learning

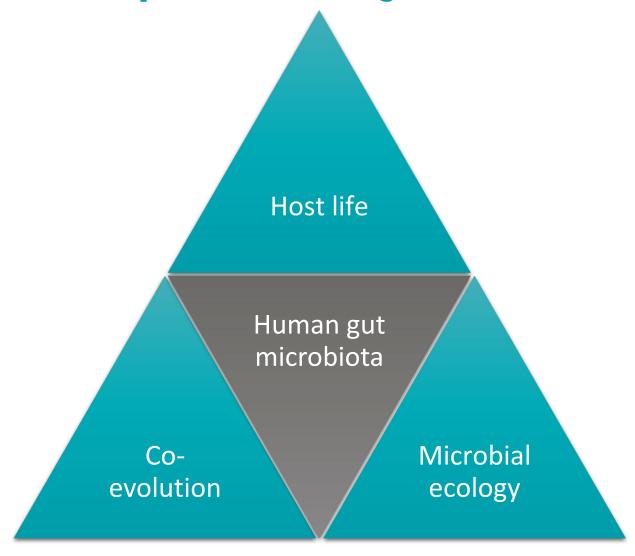


Descriptive analysis of potential functions



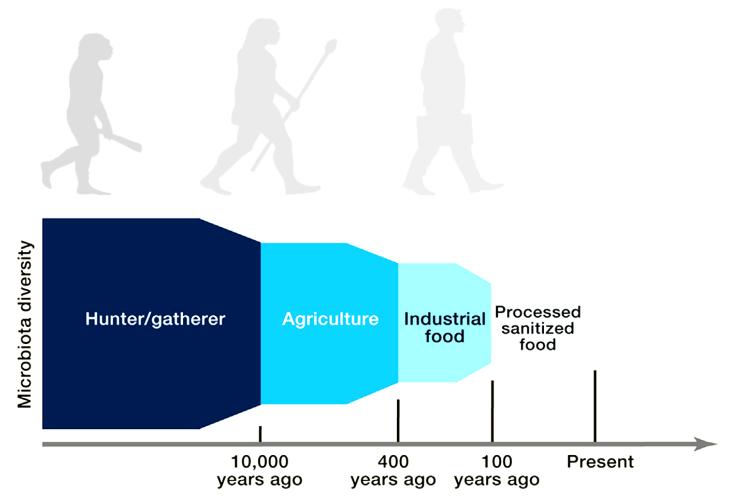
https://github.com/raeslab/GMMs https://siamcat.embl.de/

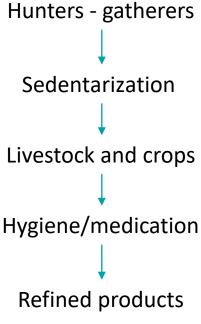
> Different factors shapes the human gut microbiome



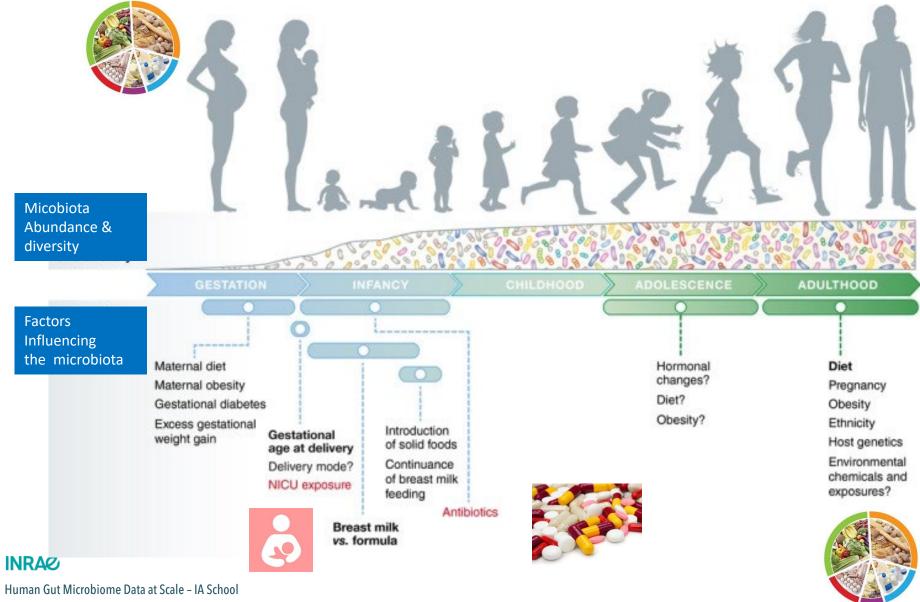
> Diet and lifestyle effect host microbiome symbiosis

Are we uncoupling our metagenome and our genome?

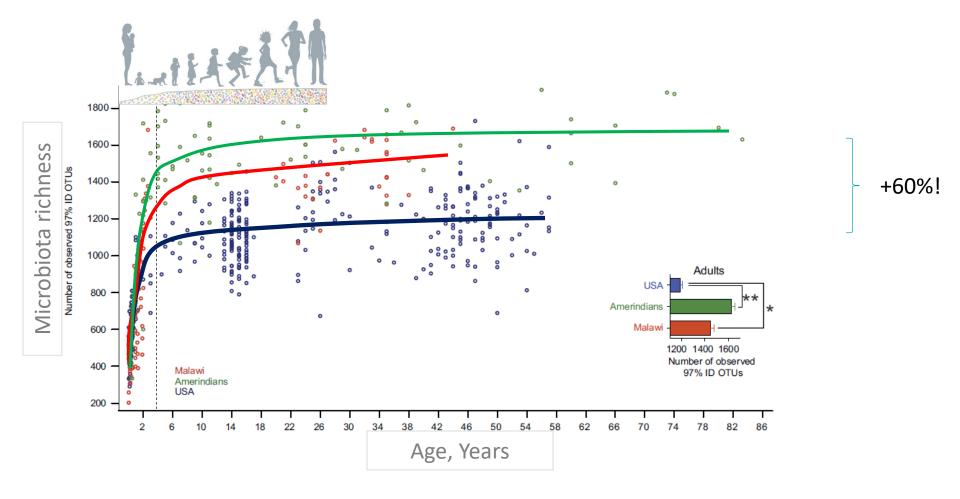




Gut microbiome throughout life span



Gut Microbiome diversity associated with the region of birth during the lifespan

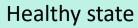


Microbiome states resilience as key factor

Healthy state

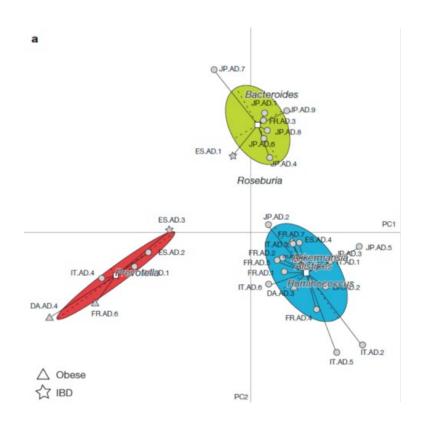
Resistance

Recovery

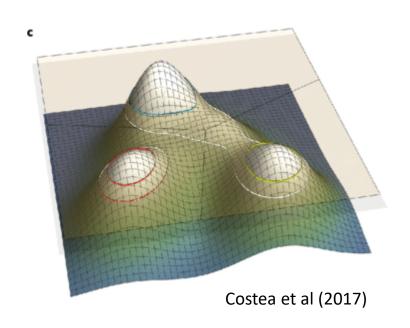


Degraded state

> Several attempts to decipher the microbiome structure



Arumugam, Raes et al (2010)

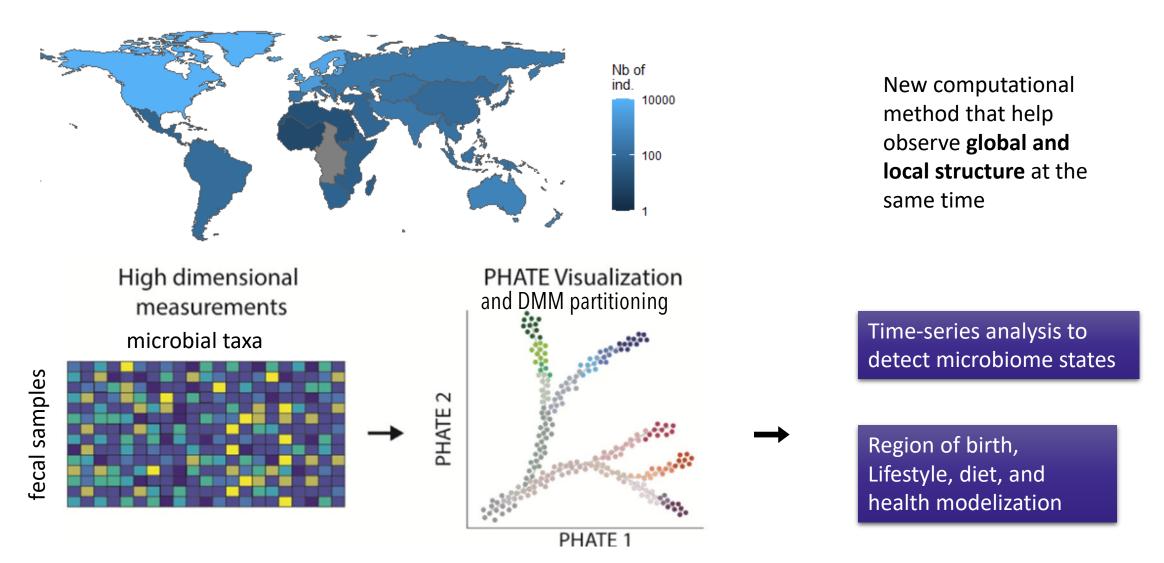


Dirichlet Multinomial Mixture (DMM) modeling

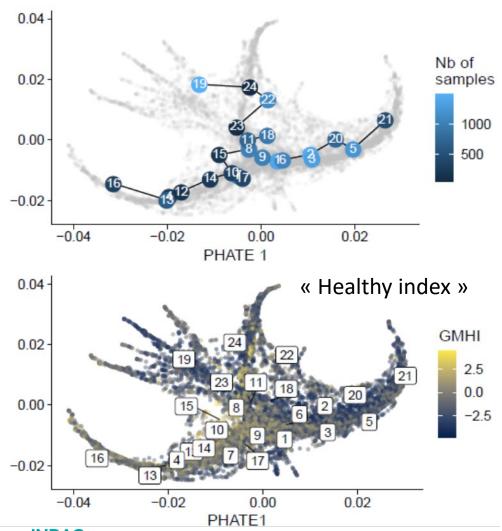
Limits:

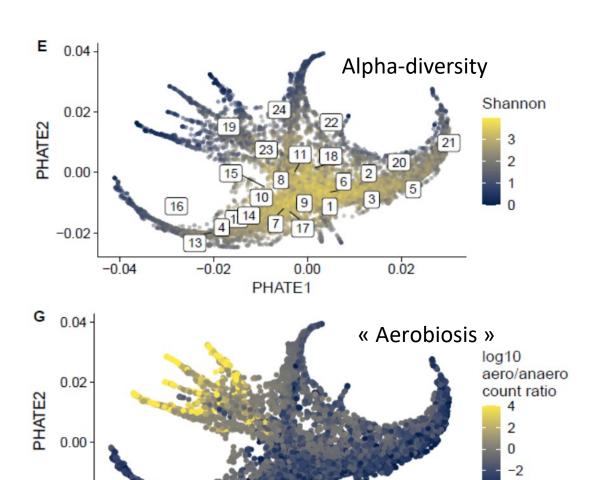
Few association with diet Few stability assessment (e.g. with timeseries)

> 35,000 human gut microbiome samples analyzed



> Human Gut microbiome structured as branches





0.00

PHATE1

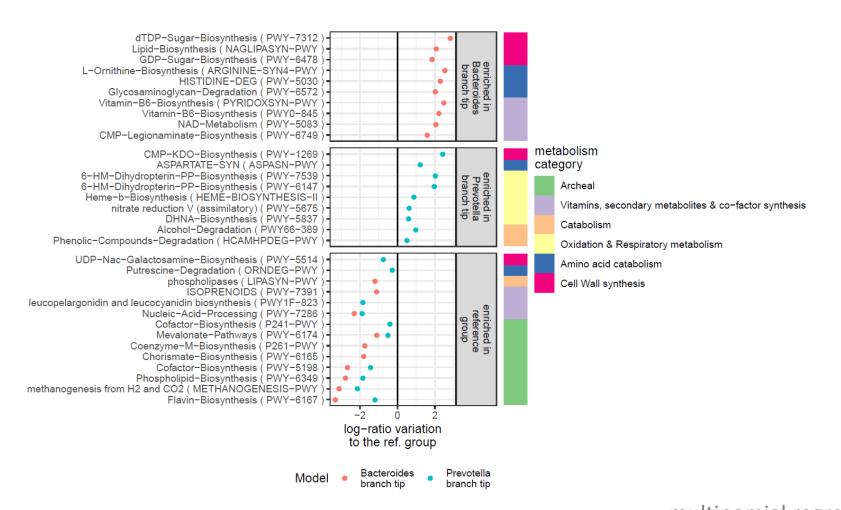
0.02

-0.02

-0.04

-0.02

> Low-diversity tips of branches display functional shifts

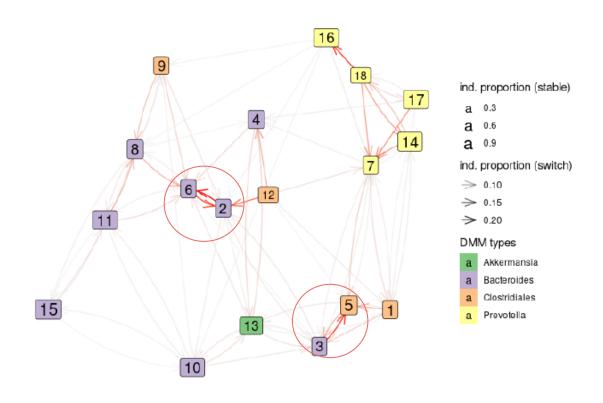


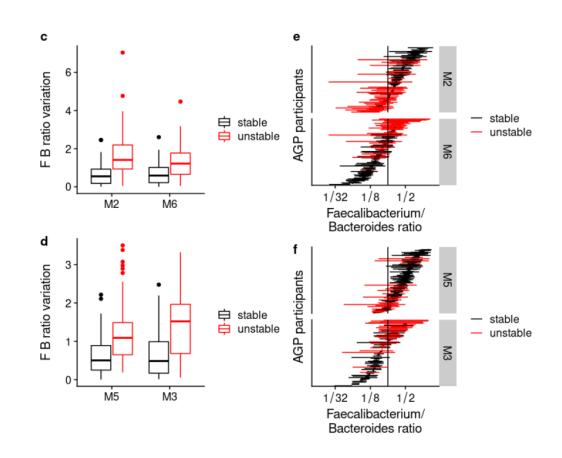
amino acid catabolism increase in *Bacteroides* branch tip

oxidative stress response increase in *Prevotella* branch tip

Dynamics between partitions are associated to branches

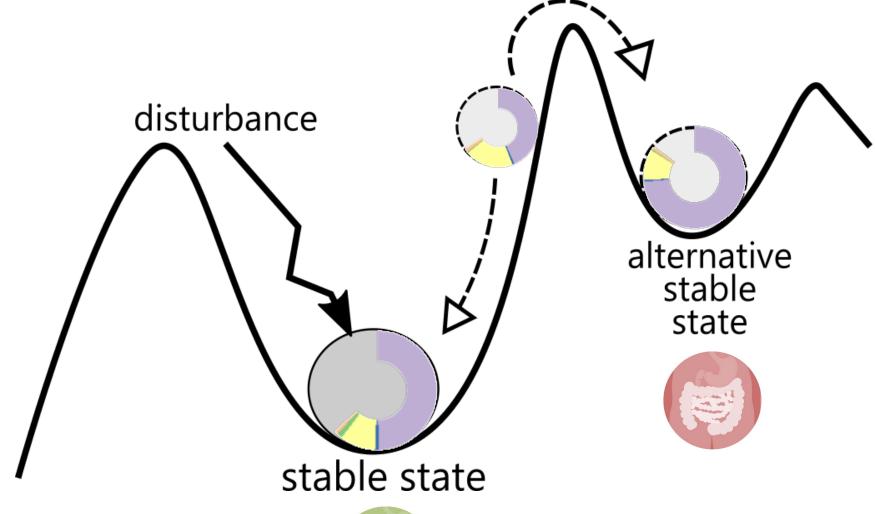
827 participants 2,998 samples 2,171 time-pairs



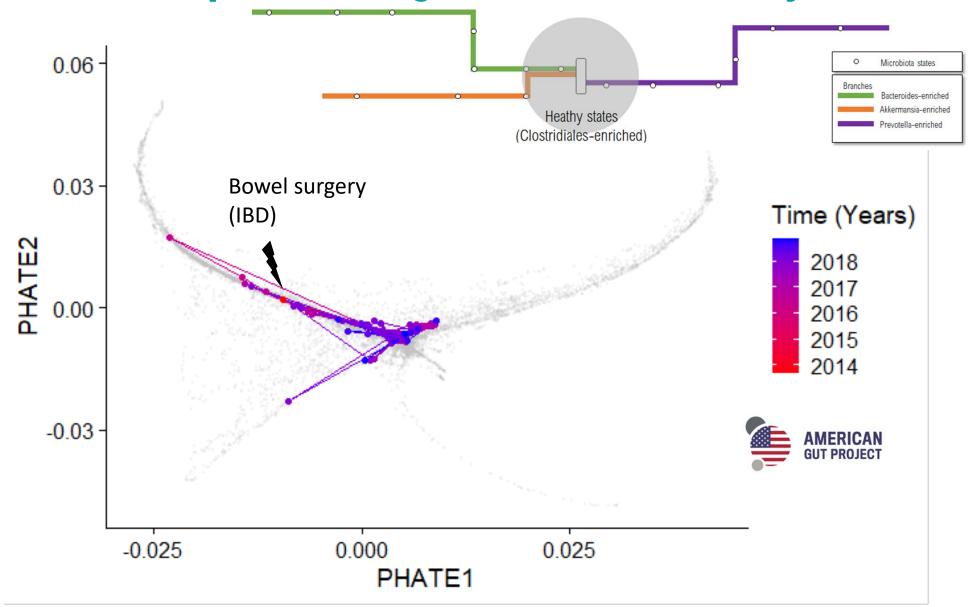


Feacalibacterium/Bacteroides as a tipping element explaining the switch between some states

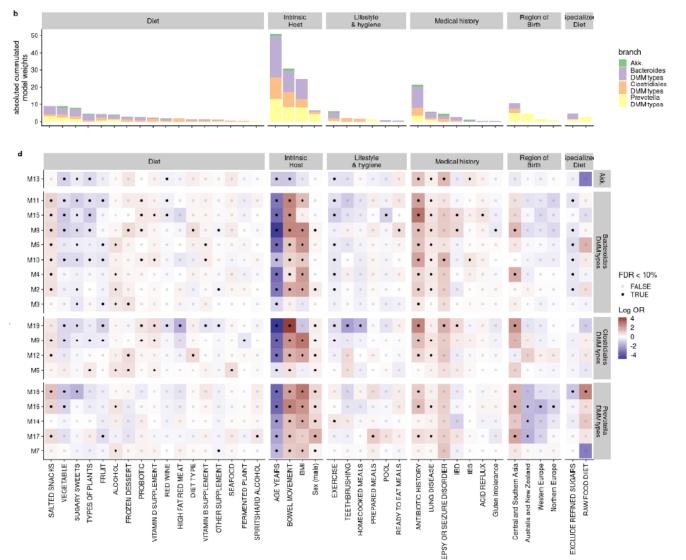
Gut microbiome alternative stable states hypothesis



> Branches help to monitor gut microbiome recovery



Gut microbiome states are differentially associated with host and env factors

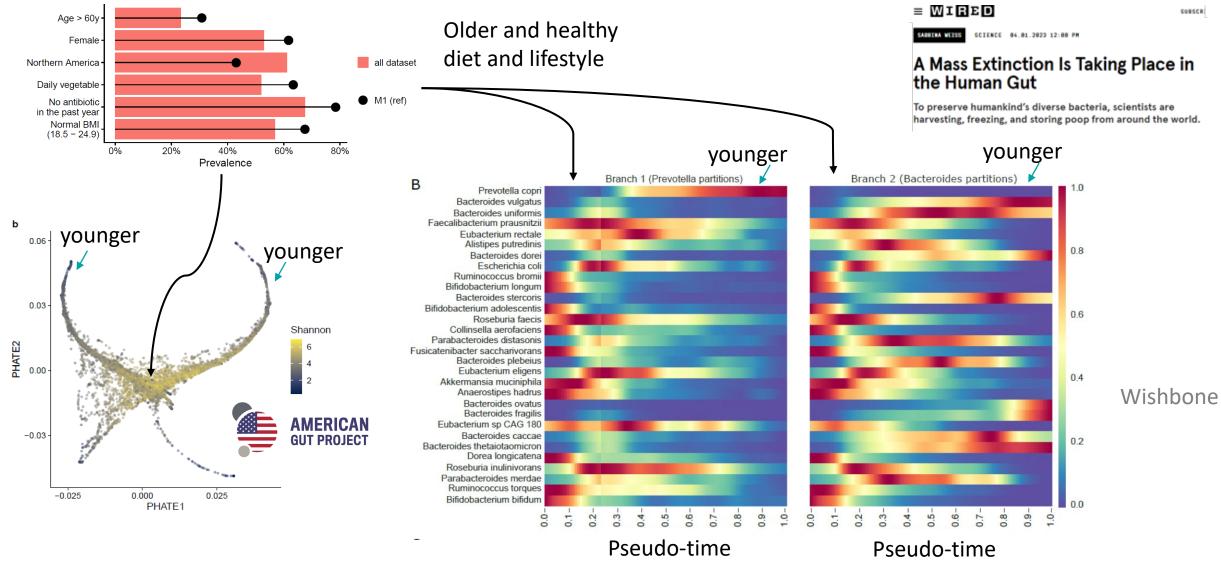


Sex, exercises frequency and region of birth associated differentially between branches

Lifestyle and hygiene associated with altered state within *Bacteroides* branch

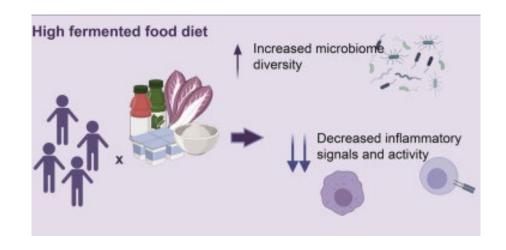
Specialized diet associated with altered state within *Prevotella* branch

> Do we already observe a intergenerationally mass extinction?

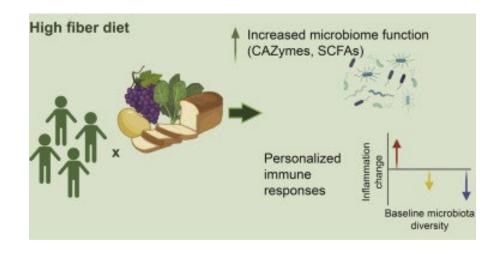


> Harnessing the microbial potential of fermented foods to avoid the point of no return

> How fermented foods and dietary fiber can fit precision nutrition for health?



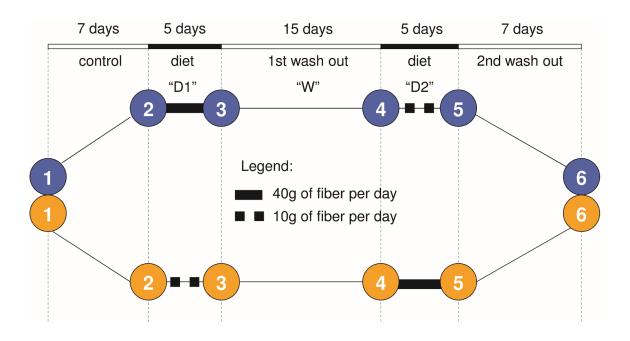
Fermented foods valuable solution in countering the decreased microbiome diversity



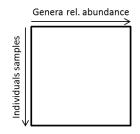
Personalized immune as function of gut microbiota baseline

Wastyk et al., 2021

> Combining time-series and meta-omics from dietary fibers challenge study



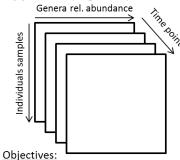
1-Table approach (e.g. PCA)



Objectives:

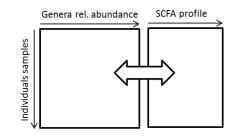
- data structure description
- Samples ordination
- Correlation between genera

K-Tables approach (e.g. PTA)



- Microbiota structure stability
- Samples time point ordination
- Time point contribution

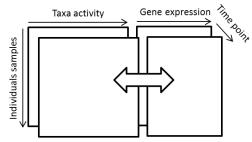
Paired-Tables approach (e.g. COIA)



Objectives:

- Relation between genera and SCFA
- co-structure (co-inertia) description
- co-structure statistical test by permutation

K-Paired-Tables approach (e.g. COIA+PTA)



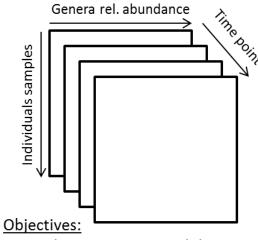
Objectives:

- co-structure stability between gene exp. and taxa
- Time point contribution to this stability

R ade4 p. 29

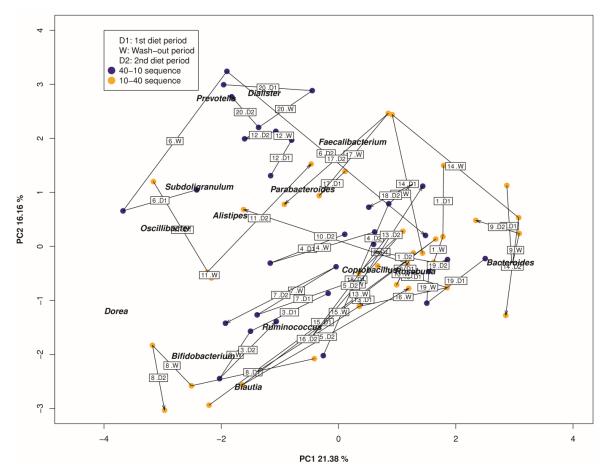
Composition and times series associations using K-tables approach

K-Tables approach (e.g. PTA)



- Microbiota structure stability
- Samples time point ordination
- Time point contribution

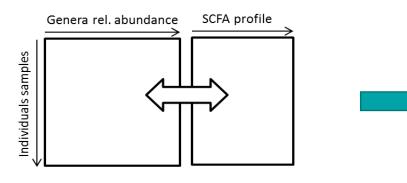
Times series Partial triadic analysis



Lesser contribution after diet challenges

> Metabolites and composition associations using Paired-Tables approach

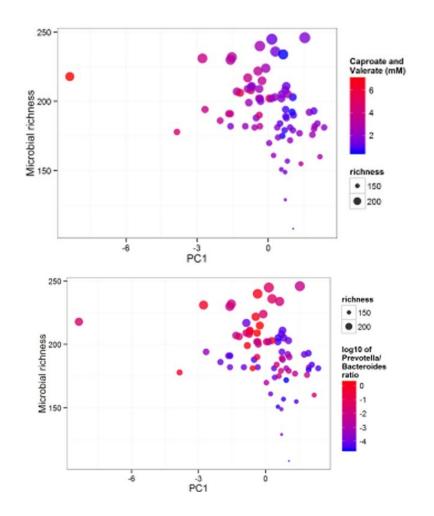
Paired-Tables approach (e.g. COIA)



Objectives:

- Relation between genera and SCFA
- co-structure (co-inertia) description
- co-structure statistical test by permutation

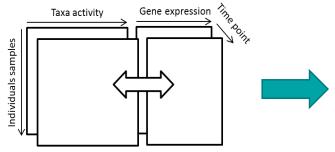
Co-inertia between composition and metabolites correlate with microbial richness



Integrate composition and metatranscriptomics after challenges using K-Paired-tables approaches

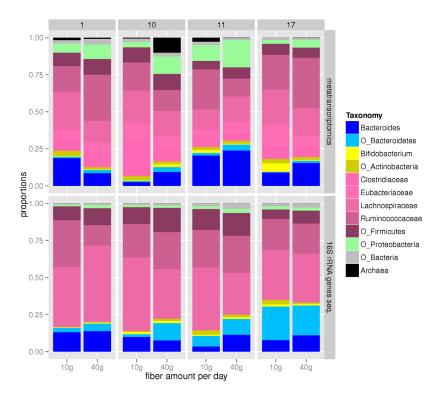
Co-Inertia Partial Triadic Analysis

K-Paired-Tables approach (e.g. COIA+PTA)

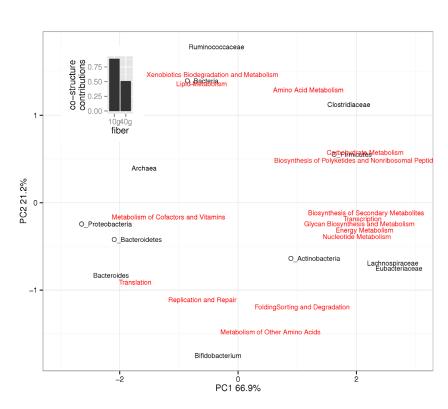


Objectives:

- co-structure stability between gene exp. and taxa
- Time point contribution to this stability



Good overlap between metatranscriptomics composition and 16S-based composition

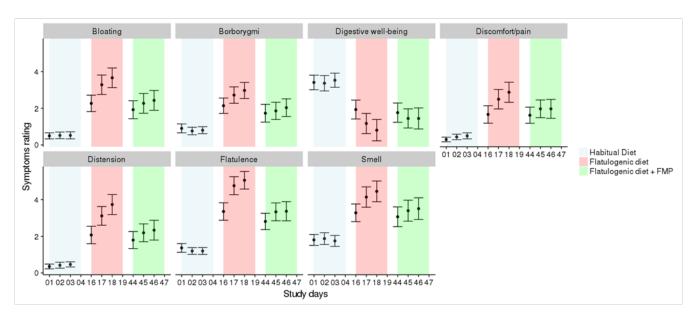


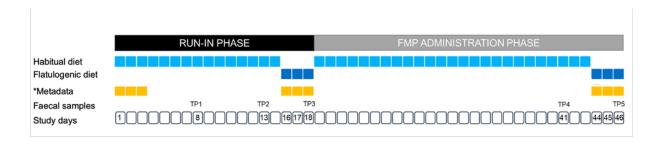
The link between MetaT and composition is lower after 40g of fiber than 10g

> Fermented food strains are active in gut microbiome

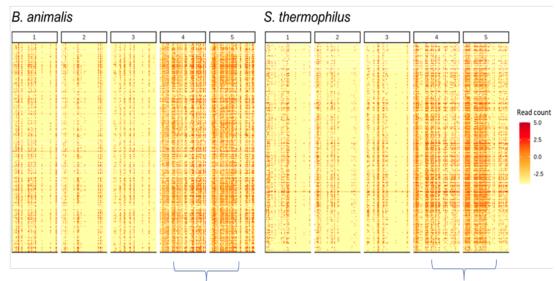
FMP product

Streptococcus salivarius subsp. thermophilus strains (CNCM I-2773, CNCM I-2130, CNCM I-2272),
Lactobacillus delbrueckii subsp. bulgaricus (CNCM I-1519),
Bifidobacterium animalis subsp. lactis (CNCM I-2494)
Lactococcus lactis subsp. lactis (CNCM I-1631).



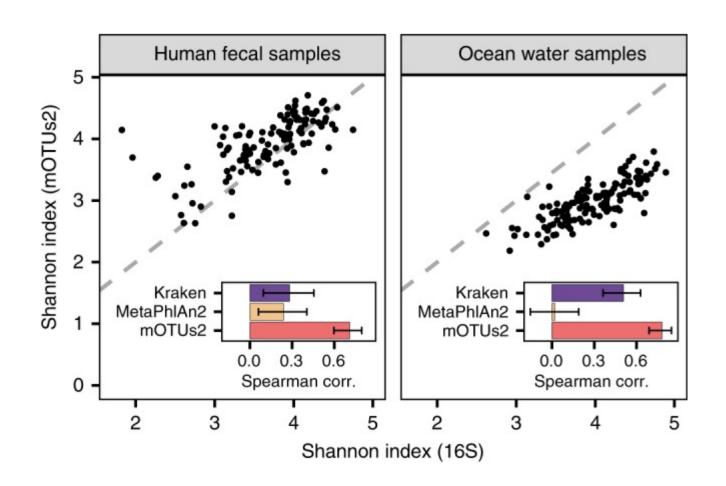


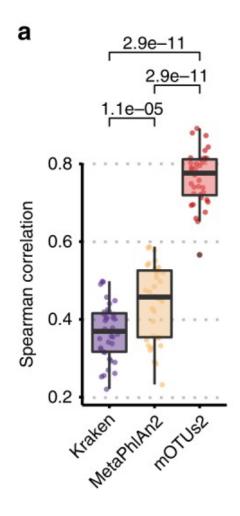
flatulogenic diet (61% carbohydrates, 25% proteins and 14% fat, 27 g of fiber per day)



After FMP consumption, FMP active strains detected by metatranscriptomics

Metatranscriptomics as proxy for composition analysis

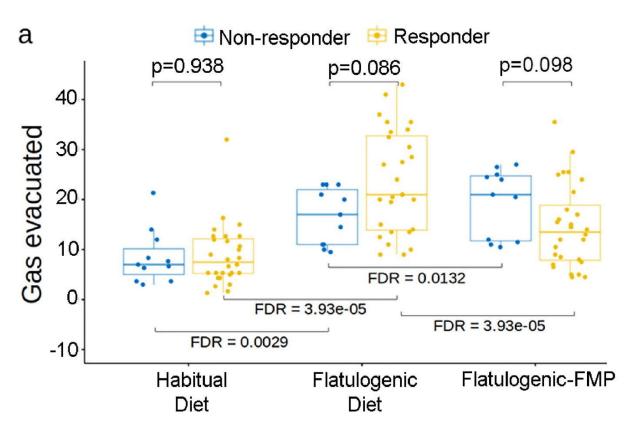


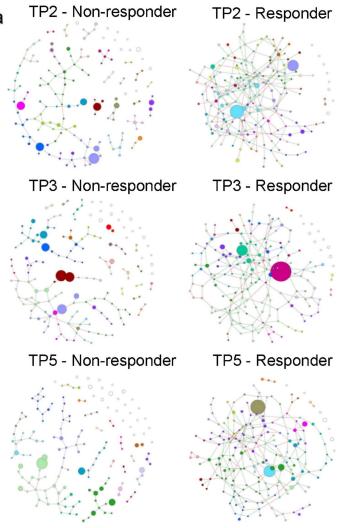


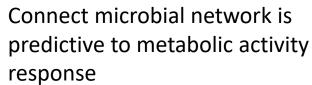
> Product consumption is associated with a change in the metabolic activity of the microbiota

TP2 - Non-responder

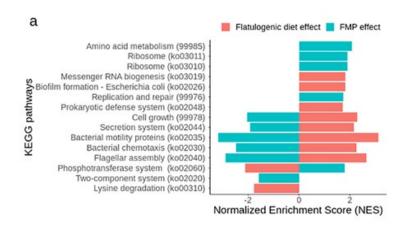
TP2 - Responder

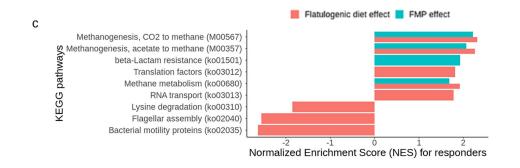






Fermented food consumption was associated with gut microbiota metabolic changes



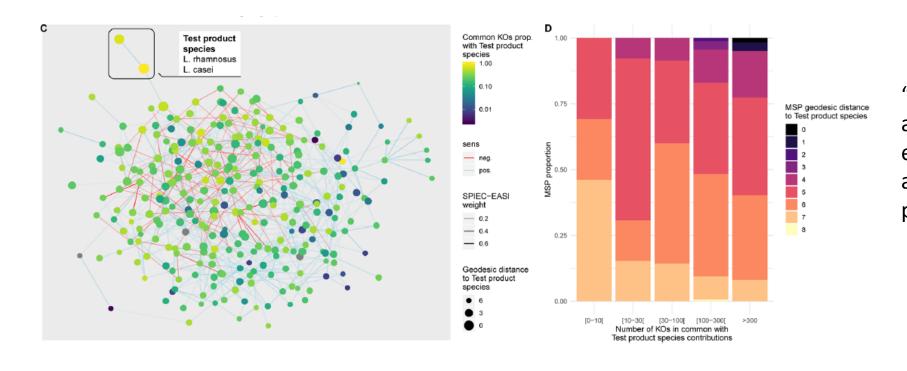


Flatulogenic diet might increase cell motility and cell growth whereas FMP consumption exhibited the opposite effect After FMP intake (TP5), higher responder group showed higher methanogenesis activity than low-responders

limma-voom + FSEA

> Gut microbiome functional enrichment by fermented food is personalized

Modular coalescence between gut and food species



"Engraftment" as function of existing niche and metabolic pathway

> What about Bifidobacterium Ecology in Adult Gut Microbiome?

Gut metagenomes

• Metadata •

Antibiotics intake

Age

Western / non-Western

Health / disease

• Gut microbiome •

Gut microbiome profile (~ 9,000 subjects)

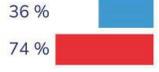
Bifidobacterium community
Dirichlet Multinomial Mixtures
(~ 5,000 subjects)

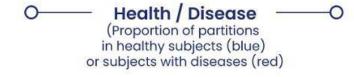
Partitions depleted of B. longum or B. adolescentis

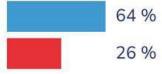
O—— Gut microbiome alpha-diversity

Partitions enriched in both B. longum

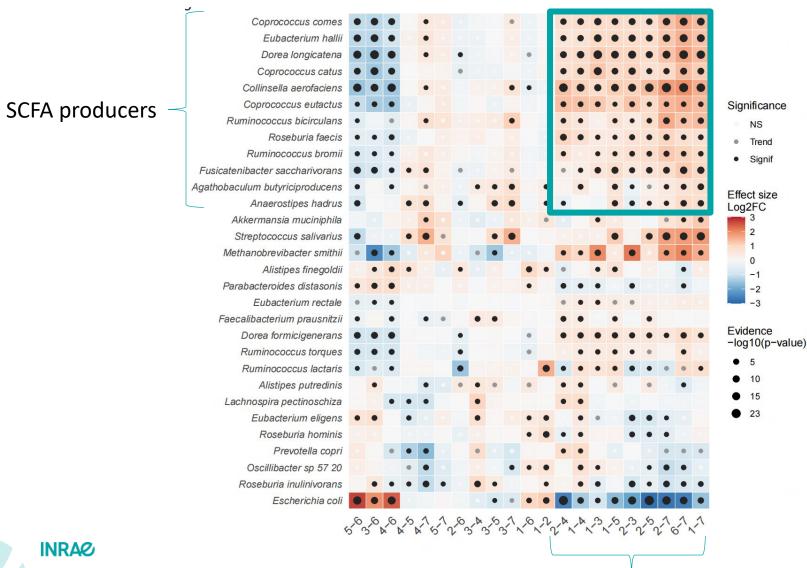
and B. adolescentis



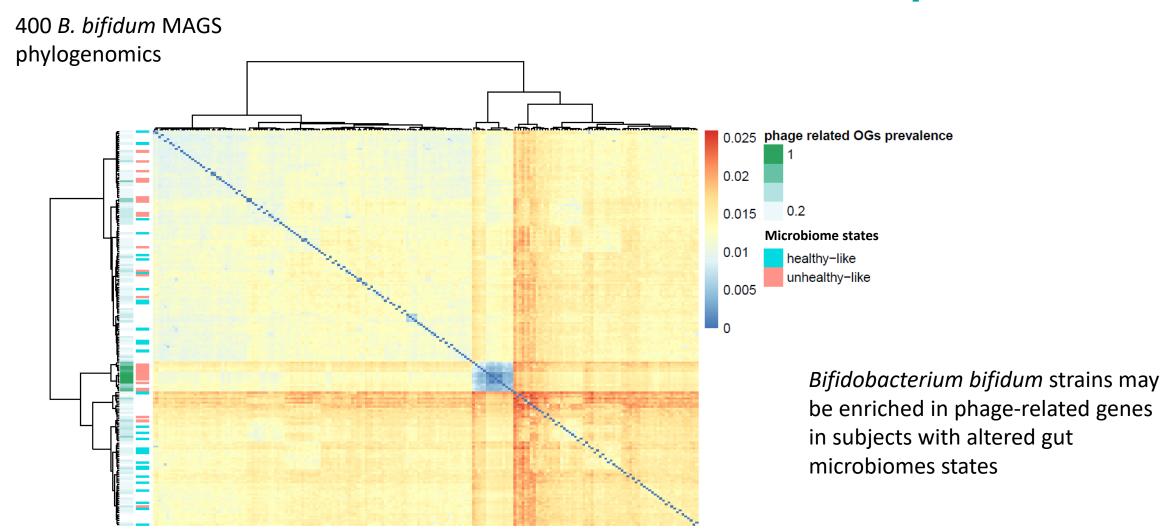




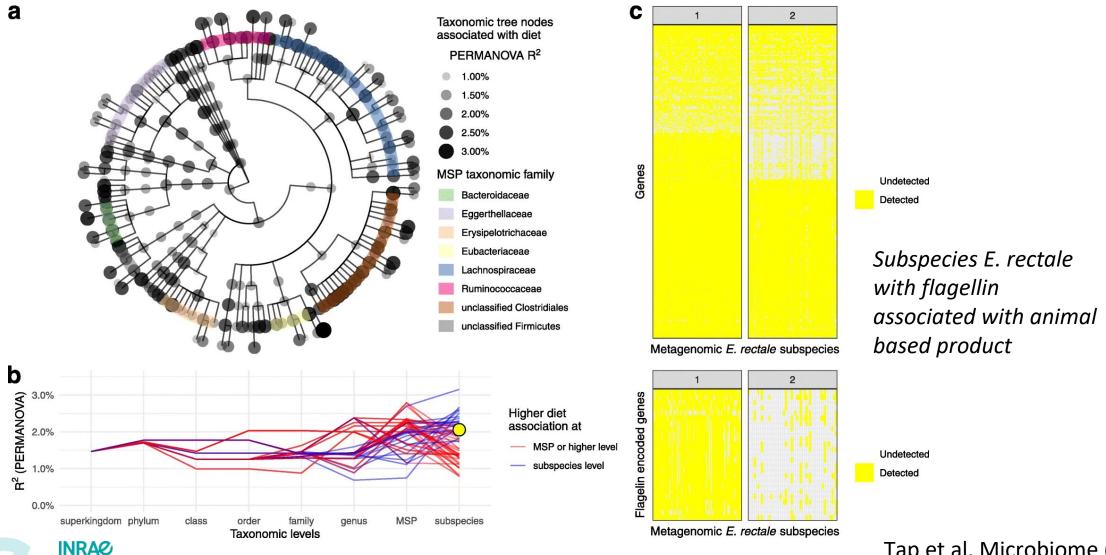
High SCFA producers in gut microbiome with High abundant B.adolescentis



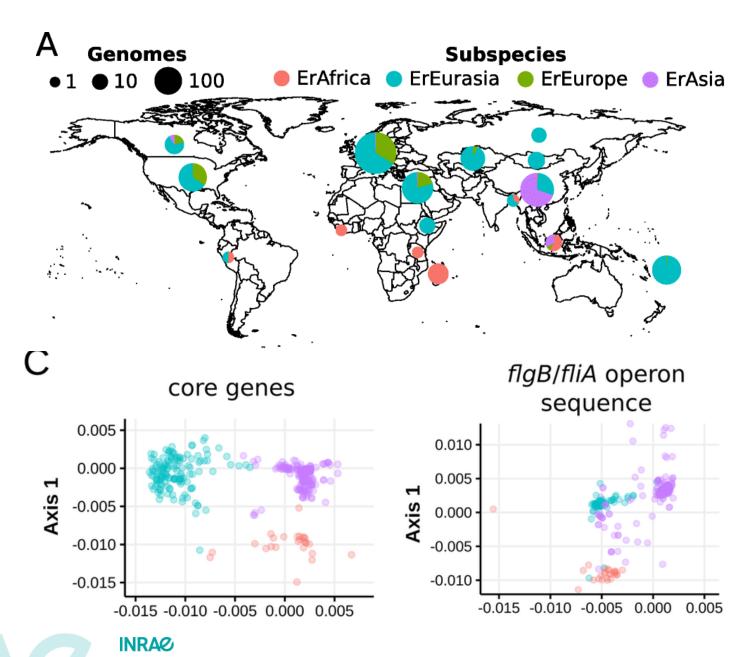
> Altered states showed functional differences within species



Some species are more associated with diet at subspecies levels

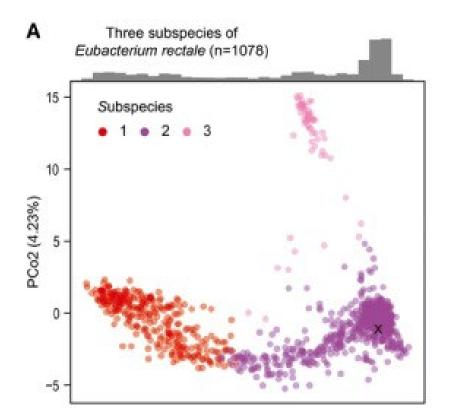


Tap et al. Microbiome (2021)

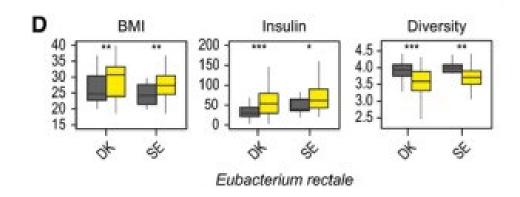


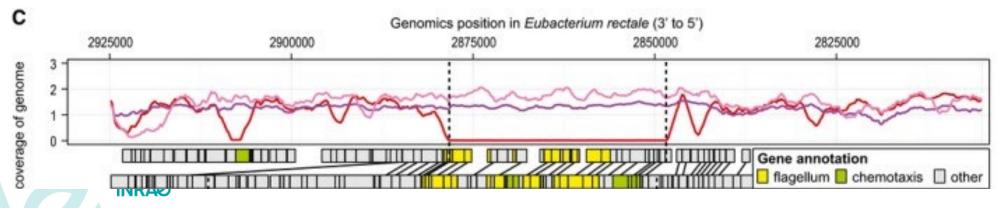
ErEurope strains are immotile due to loss of motility operons

Karcher et al Genome Bio (2020)

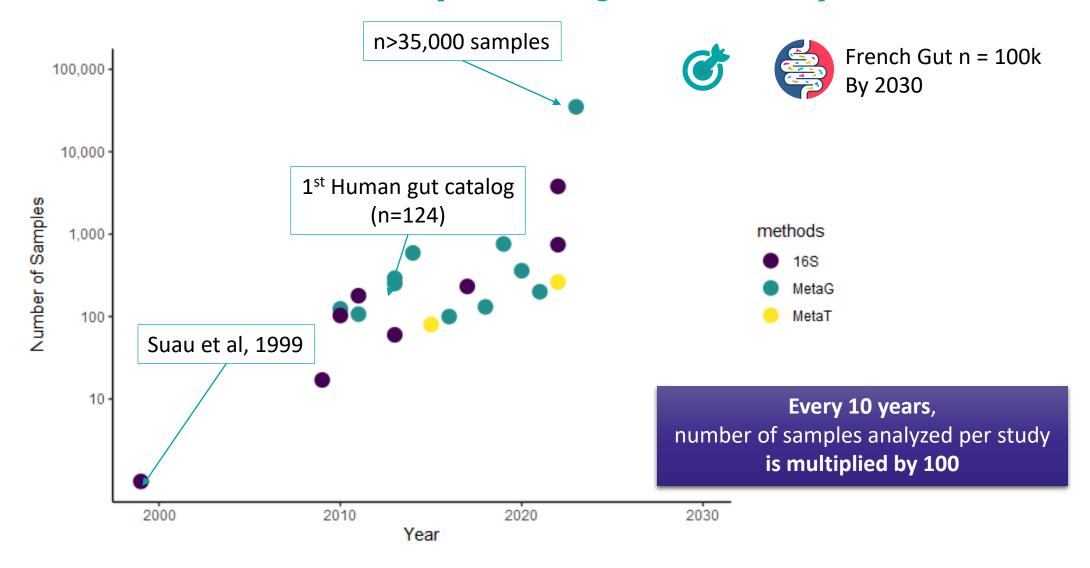


BMI and insulin resistance are significantly higher in individuals who predominantly harbor the flagellum-carrying E. rectale subspecies

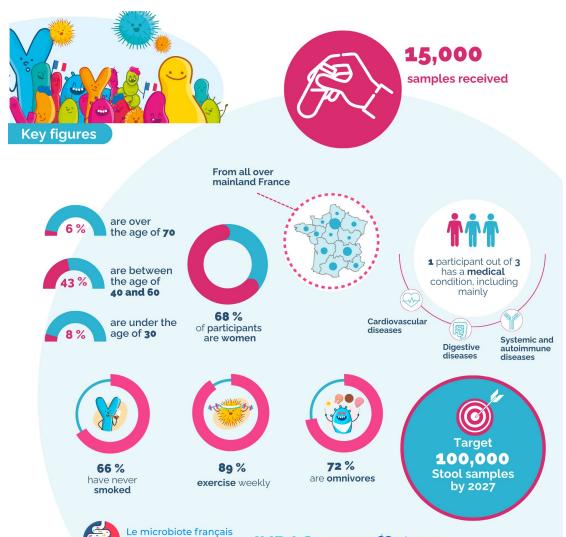




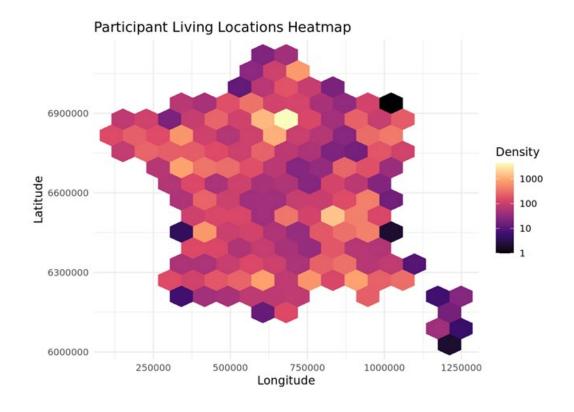
Gut microbiome studies: exponential growth of sample numbers



Le French Gut aka "le microbiote français" 🔗 🍄 💀



INRAE



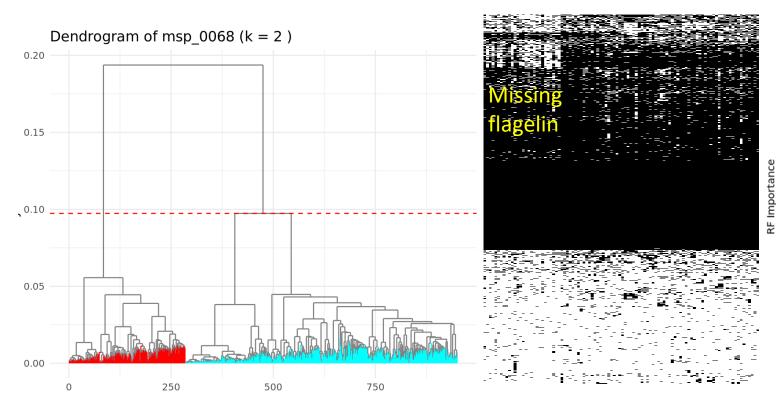
p. 46

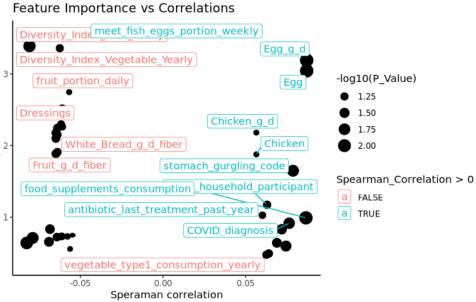
INRAe

Human Gut Microbiome Data at Scale - IA School

Le French Gut

> Metagenopolis Meteor pipeline can recapitulate findings in French Gut data





Diet profile and habits associated with *E. rectale* strains with flagelin

Article

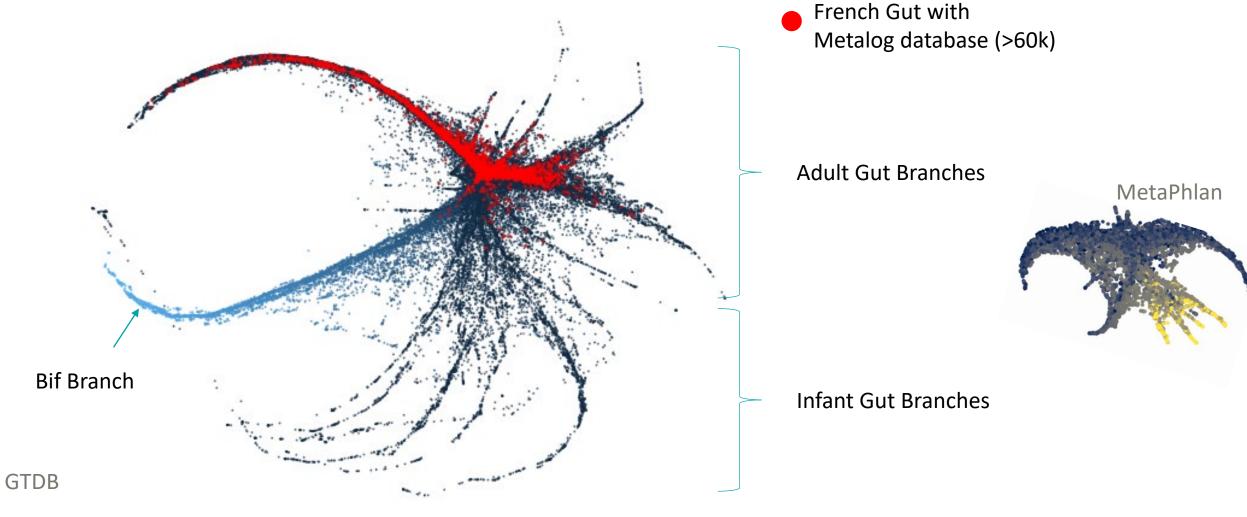
Accurate profiling of microbial communities for shotgun metagenomic sequencing with Meteor2

Amine Ghozlane, Florence Thirion, Florian Plaza Oñate, Franck Gauthier, and 5 more

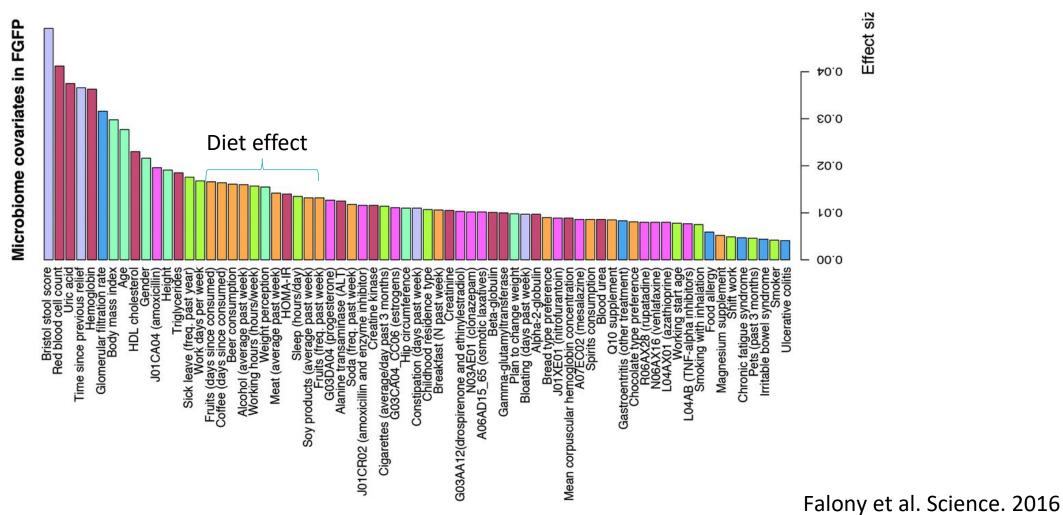
This is a preprint; it has not been peer reviewed by a journal.

https://doi.org/10.21203/rs.3rs-6122276/v1
This work is licensed under a CC BY 4.0 License

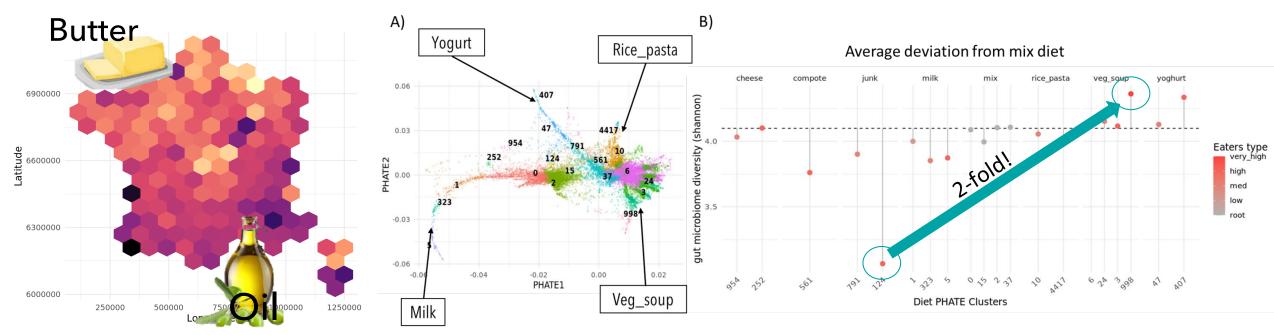
French Gut microbiome participants were spread into branches



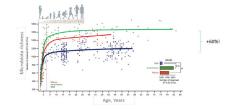
distance-based redundancy analysis showed minor associations with diet compared to physiological covariates



> Dietary branches analysis can explain up to 50% gut microbiome richness

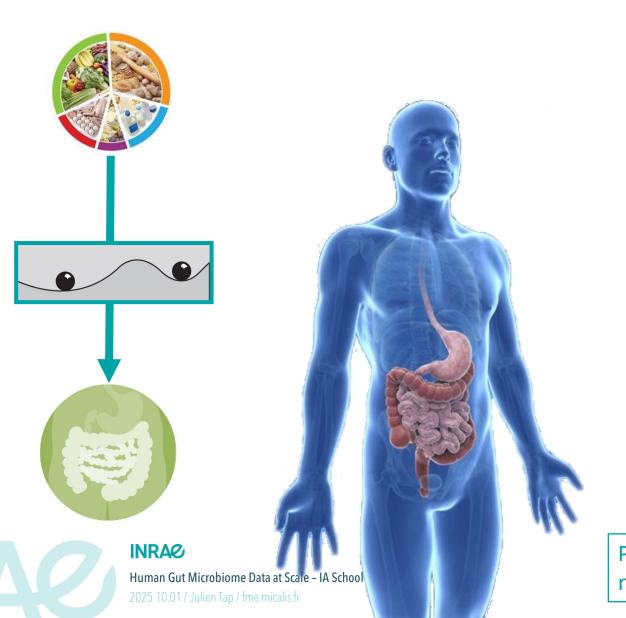


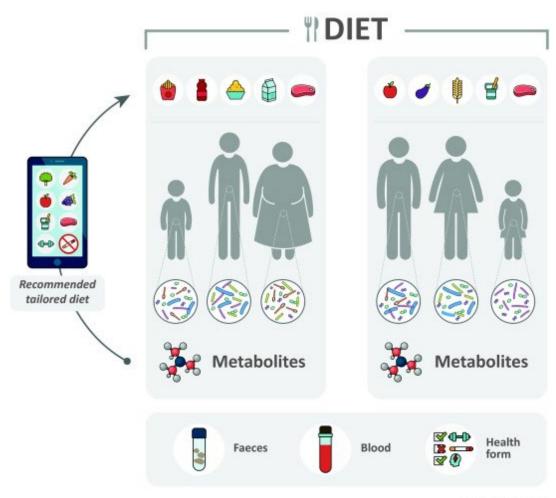
With large data, any subtle difference is significant, so the effect size is the way to interpret data



•

> Endgame: From gut microbiome states to next-gen fermented food





Trends in Microbiolog

Prevent gut microbiome critical transition to strengthen its resilience using next-gen fermented food

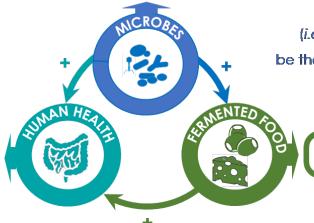
How to design next-gen and sustainable fermented food?

Can we provide new protocols

for improving risk/benefit assements (pahogens, toxins...) of old and new fermented food?

PROPOSING HEALTHY

DIET RECOMMENDATIONS



LEVERAGING FOOD MICROBIAL DIVERSITY

Can Food Microbes

(i.e. microbial consortia as dietary microbes) be the solutions to environmental-friendly and food production sustainability?

> **IMPROVING SUSTAINABILITY** OF FERMENTED FOOD

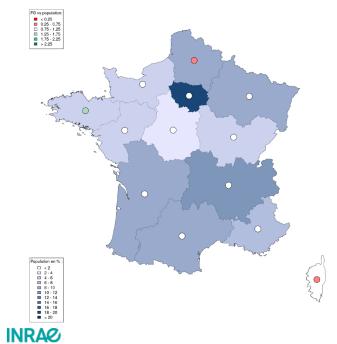
Can we demonstrate that fermented food consumption

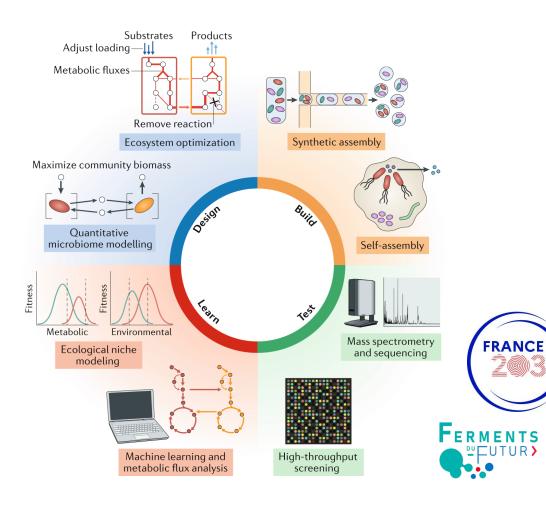
improve human health and restore (maintain) human microbiome symbiotic relationship?

What would be the impact

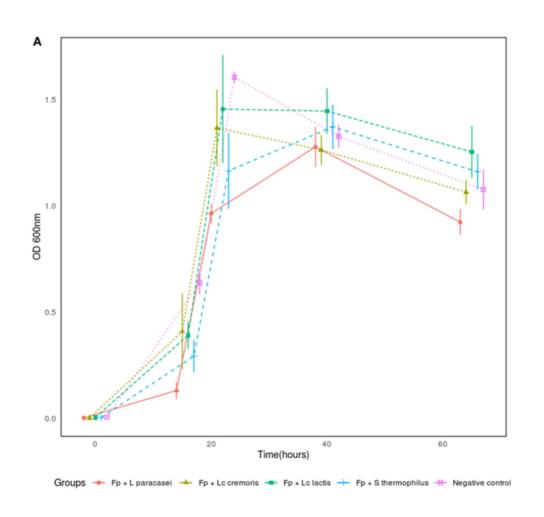
of transition from animal- to plant-based fermented food (anti-nutritional factors, low availability of certain nutrients...)? Stéphane Chaillou (Coord.)

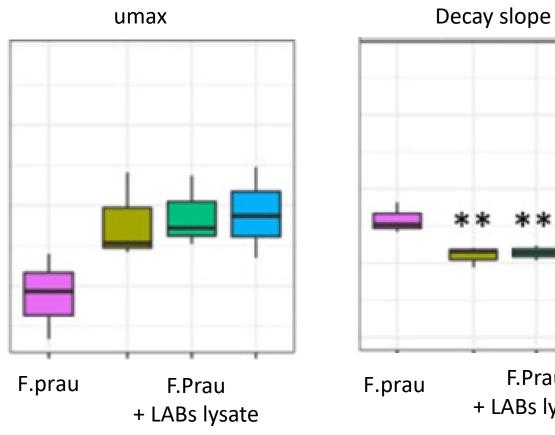
Big data population scale study connect to microbiome engineering





Towards selecting strains with abilities to prevent tipping point in gut microbiota



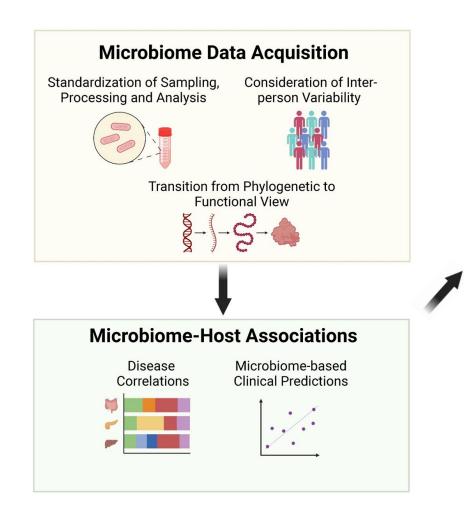


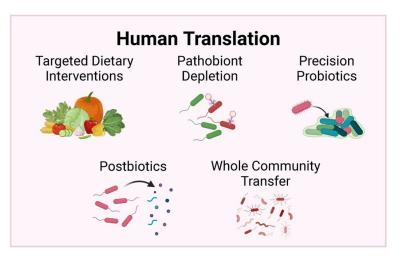
Increase of peptidoglycan levels for cell wall formation *F.prau*

F.Prau

+ LABs lysate

From big data study to the determination of causality at scale





Microbiome Workflows at INRAE Micalis institute

Contact:
Lionel Rigotier-Gois,
Emmanuelle Maguin
Moez Rhimi

fluorescence)

(solid & liquid)

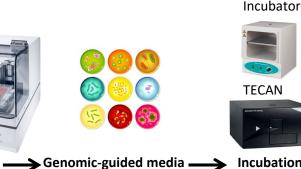
Specificities:

Anaerobic microorganisms
Single cell dispensing
Oriented culturomics by genomics

Cohorts of individuals

Anaerobic oriented isolation

Time 0 Microbiota Sample preparation (microfluidic combined eubiosis) Sample with microscopy &



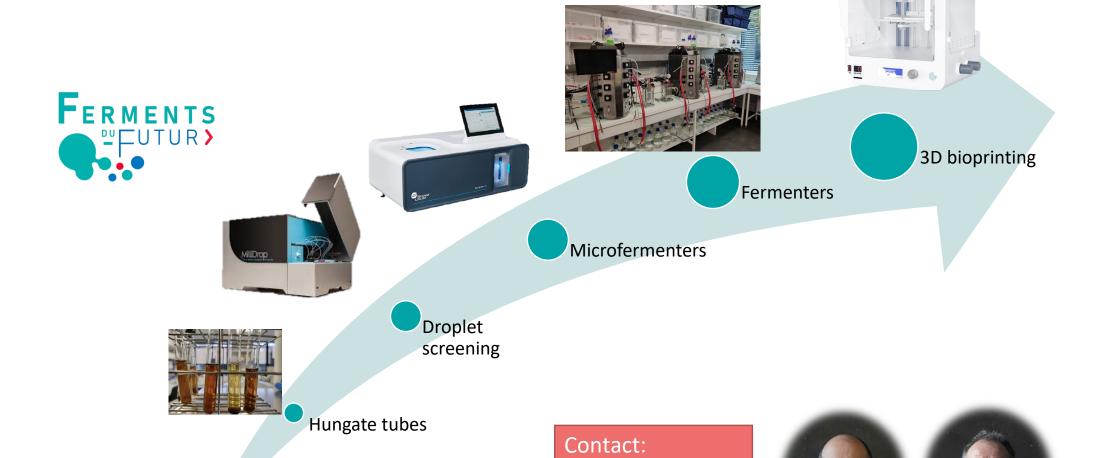
TECAN Incubation & growth monitoring

Characterization of isolates

& genome sequencing)

Phenotyping
(Host-microbe
interactions
In vitro, consortia,
Gut on chip,
ex vivo & in vivo)

> Towards Phenotyping & Consortia design



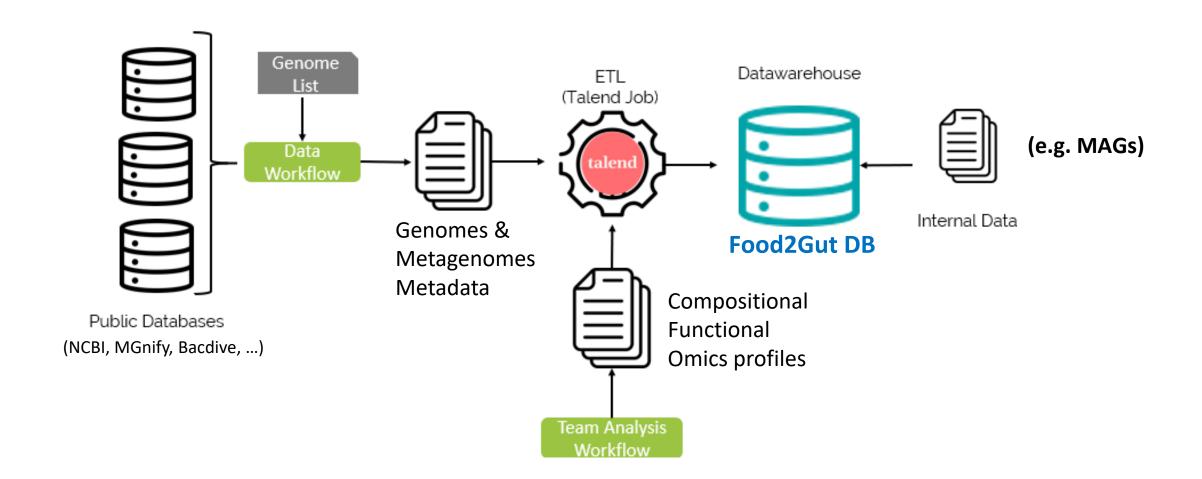
Romain Briandet

Stéphane Chaillou

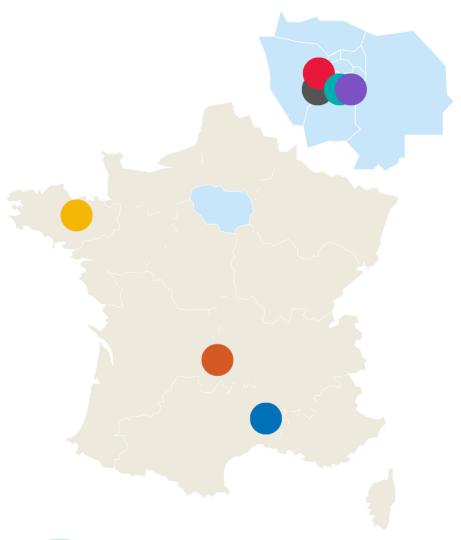
INKREDIBLE+

Human Gut Microbiome Data at Scale – IA School
2025 10 01 / Julien Tap / fme micalis fr

Integration of multi-omics data with metadata



National distributed platform set-up



Innovative processes development

Screening platform

- Selection of ferments& growth conditions
- Metabolic properties
- > Directed evolution

|-----

Fermentation platform

- > Bioreactors (liquid, solid); 1 to 10 L
- > Production of ferments& fermented foods
- > DSP; recovery of co-products

Analytical platform

- Fermentation monitoring; raw material compositions
- Nutritional analysis & contaminants
- > Physico-chemical properties

Food workshop

Pre-treatment of raw materials Recipes and prototyping Conservation

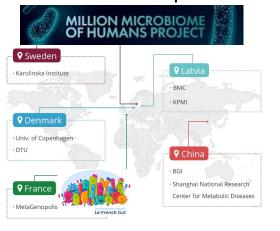
Microbiome science trends: From large data to precision-based models

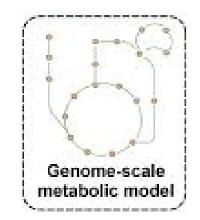
Worldwide Population scale studies

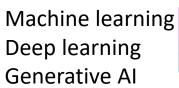
High throughput microbiology

Metabolic models

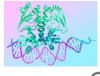
Ex-vivo models



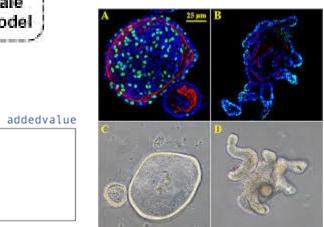




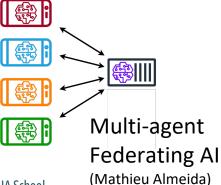
Discovery of antimicrobial peptides



MICROSETTA INITIATIVE



culturomics



> Advanced "real" Al for omics

Techniques and applications

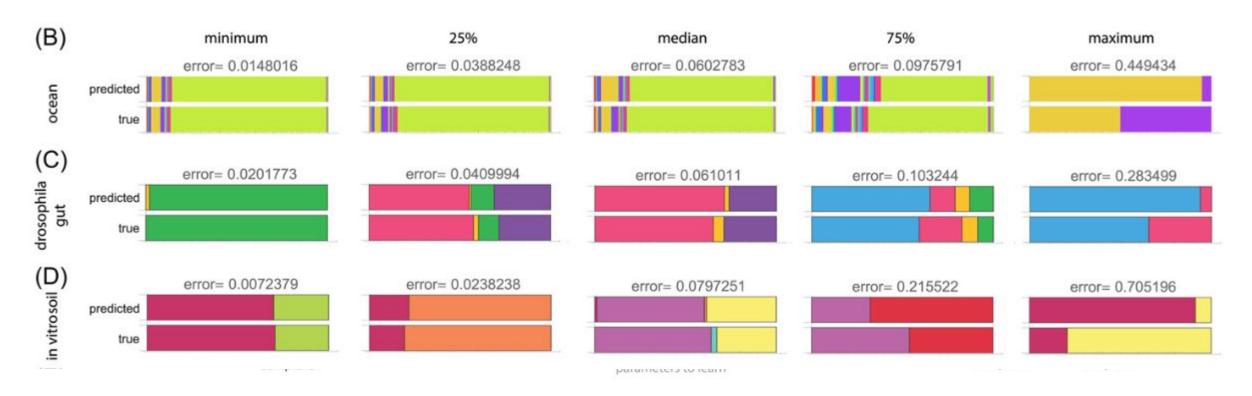
- LLLM for genome assembly binning, taxonomic identification and functional annotation
- ML/DL to predict the microbiote composition
- ML to capture the compositionality of microbiomes
- Variant discovery and strain-level identification
- High troughput 3D structure prediction of proteins and complexes
- Predict metabolic profiles from microbe abundance

Examples

- BERTax, VAMB
- cNode
- DeepCoda,
 Coda4Microbiome
- DeepVariant
- [Alpha|Rosetta|ESM]Fold
- AlphaMissense, ProGen
- mmvec / McMLP

cNode (Michel-Mata et al. 2022)

A Deep Learning framework to predict microbiome compositions from species assemblages



Take home messages- large data microbiome versus "AI"

Anchor analyses in ecology:

Always connect your analysis to a clear ecologically relevant research question, ensuring that findings are interpretable beyond purely statistical associations.

Integrate ecological modeling:

Use ecological theories and models (e.g., succession, fluxes, network dynamics) to guide interpretation and avoid blackbox conclusions.

Diversify analytical pipelines:

When possible, cross-validate results using multiple approaches (statistics, bioinformatics pipelines, Al/machine learning, mechanistic models) to reduce false discoveries and enhance robustness.

Interact deeply with your data:

Explore, visualize, and critically question both raw data and method outputs: do not let the algorithm dictate your interpretation.

Prioritize effect size over significance:

While p-values provide a basic filter, effect sizes and confidence intervals better reflect the biological relevance of findings.

Learn across disciplines:

Use and adapt advanced statistical and modeling methods from other fields (climate science, economics, physics) that already tackle complexity, fluxes, and high-dimensionality.

Acknowledgments

Knight lab

Manichanh lab

Joel Doré et al.

Boris Le Neve Muriel Derrien

Damien Paineau et al.

