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Fig. 10 Microbial community dynamics under antibiotic perturbation: (a) Species-specic growth rates (1/day). (b) Antibiotic
susceptibility (1/day) in response to clindamycin, with negative values indicating inhibition and positive values indicating
facilitation. (c) Interaction matrix M quantifying pairwise eects between species (element mij shows eect of species j on
species i), with blue indicating repression and red indicating activation. Species are ordered by antibiotic susceptibility from
most inhibited (bottom) to most promoted (top). Species abbreviations: Bar (Barnesiella), uLac (undened Lachnospiraceae),
ucLac (unclassied Lachnospiraceae), Oth (Other), Blau (Blautia), uMol (undened Mollicutes), Akk (Akkermansia), Cop
(Coprobacillus), Cdif (C. dicile), Ent (Enterococcus), uEnt (undened Enterobacteriaceae). Data is based on [67,68].

3.2 Population dynamics

Models of population dynamics are useful for studying

species interactions in ecological and biomedical con-

texts. While we previously explored discrete-time for-

mulations for multi-species predator–prey interactions

(see Section 2.2), we now shift our focus to a continuous-

time framework and consider the generalized Lotka–

Volterra (gLV) equations. This framework has been em-

ployed, for instance, in microbial ecology [51], where

species frequently engage in inhibitory and facilitative

interactions. In this context, a commonly used form of

the gLV equations is

ẋi(t) = xi(t)


bi +

n

j=1

mijxj(t) + ϵiu(t)


 , (25)

where xi(t) denotes the abundance of microbial species

i at time t, bi is its intrinsic growth rate, and mij rep-

resents the interaction coecient quantifying the eect

of species j on species i. The term ϵiu(t) models the

eect of an external antibiotic treatment u(t), where

ϵi indicates the susceptibility of species i. A positive ϵi

corresponds to inhibition by the antibiotic, while a neg-

ative value allows for cases where species i may increase

in abundance due to reduced competition following an-

tibiotic exposure.

While gLV models are widely used to study mi-

crobial systems, a key limitation is their assumption

of direct interactions between microbial species, which

overlooks indirect eects mediated by competition for

shared nutrients.

In [68], gLV parameters were inferred using mouse

data from a study [67] that examined the eect of the

antibiotic clindamycin on intestinal colonization by the

spore-forming pathogen C. iil. The dataset includes

a total of n = 11 species. In Fig. 10, we show the esti-

mated growth rates bi, clindamycin susceptibilities ϵi,

and elements of the interaction matrix mij . All growth

rates are positive, while the diagonal elements of the

interaction matrix, mii, are negative. These negative

values indicate that each species can reach its carrying

capacity even in the absence of other species. The in-

ferred clindamycin susceptibilities suggest that the an-

tibiotic inhibits all genera except Entroous and an
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Fig. 11 Simulated microbial community dynamics under antibiotic interventions. (a) Without targeted treatment, the initial
administration of clindamycin promotes the outgrowth of C. dicile, leading to a persistent infection. (b) A neural ODE
controller applies a targeted antibiotic treatment starting on day 100 (black arrow), eectively suppressing C. dicile. Colors
represent dierent microbial groups as indicated in the legend.

undened group of Entrotri. C. iil itself

appears to be only mildly inhibited by clindamycin.

We now consider a control problem focused on treat-

ing a C. iil infection following the administration

of clindamycin [69–71].

We use the growth rates, interaction coecients,

and clindamycin susceptibilities from [67,68] (see Fig. 10)

and initialize the model with initial condition 5 from

[68, 69]. To simulate infection onset, we introduce a

small perturbation of 10−10 (in nondimensional units)

to the C. iil compartment and apply a unit dose of

clindamycin on the rst day. This treatment protocol is

consistent with the constant dosing schedule considered

in [69].

In Fig. 11(a), we show the evolution of microbial

species. The results show that the initial antibiotic in-

tervention, in combination with the C. iil pertur-

bation, leads to a substantial infection after approxi-

mately 90–100 days. In the absence of both perturba-

tion and treatment, the system evolves as in Fig. 3(a)

of [69].

C. iil infections are, for instance, treated with

antibiotics such as vancomycin or metronidazole [72].

Following the approach in [69], we now consider a hy-

pothetical targeted antibiotic that is highly eective

against C. iil. The treatment begins on day 100

and lasts for 10 days. In our model, we set the antibi-

otic susceptibility of C. iil to −1, while the suscep-

tibilities of all other microbial species are set to zero.

We train a neural ODE controller to minimize the loss

function

1

50

 150

100

x9(t) dt+ 001
1

10

 110

100

û(t;w)2 dt , (26)

which penalizes the abundance of C. iil over time

while also promoting prudent use of the targeted an-

tibiotic.

In Fig. 11(b), we show the simulation results ob-

tained using the trained controller. We observe that the

targeted antibiotic treatment successfully suppresses the

C. iil infection. The neural ODE controller con-

sists of ve layers, each with four ELU-activated neu-

rons. Training was performed for 200 epochs using the

Adam optimizer with a learning rate of 10−3, yielding

a minimum loss of 0.061. As a baseline for comparison,

we simulated a naive treatment strategy that adminis-

tered a constant unit dose per day over the same 10-day

period. This approach resulted in a loss more than ten

times higher and failed to eliminate the infection.


