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Abstract—We show that standard multilayer feedforward networks with as few as a single hidden layer and
arbitrary bounded and nonconstant activation function are universal approximators with respect to Lr(u) per-
formance criteria, for arbitrary finite input environment measures u, provided only that sufficiently many hidden
units are available. If the activation function is continuous, bounded and nonconstant, then continuous mappings
can be learned uniformly over compact input sets. We also give very general conditions ensuring that networks
with sufficiently smooth activation functions are capable of arbitrarily accurate approximation to a function and
its derivatives.



Learning a Dynamical System
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Learning a Dynamical System
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Learning a Dynamical System
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Figure courtesy: Krishnapriyan, Aditi S., et al. "Learning continuous models for continuous physics." arXiv preprint arXiv:2202.08494 (2022).



Learning a Dynamical System
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Learning a Dynamical System

1000 training epochs
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Runge—Kutta Neural Network for Identification
of Dynamical Systems in High Accuracy

Yi-Jen Wang and Chin-Teng Lin, Member, IEEE

Abstract— This paper proposes the Runge-Kutta neural net-
works (RKNN’s) for identification of unknown dynamical sys-
tems described by ordinary differential equations (i.e., ordi-
nary differential equation or ODE systems) in high accuracy.
These networks are constructed according to the Runge-Kutta
approximation method. The main attraction of the RKNN’s
is that they precisely estimate the changing rates of system
states (i.e., the right-hand side of the ODE x = f(x)) directly
in their subnetworks based on the space-domain interpolation
within one sampling interval such that they can do long-term
prediction of system state trajectories. We show theoretically
the superior generalization and long-term prediction capability
of the RKNN’s over the normal neural networks. Two types of
learning algorithms are investigated for the RKNN’s, gradient-
and nonlinear recursive least-squares-based algorithms. Conver-
gence analysis of the learning algorithms is done theoretically.
Computer simulations demonstrate the proved properties of the
RKNN’s.

fixed regular sampling rate). This is not the nature of an ODE
system. Although a high-order discretization is more accu-
rate than the first-order discretization, the resulting ordinary
difference equations of the former are usually complex and
intractable.

In this paper, we present a class of feedforward neural
networks called Runge—Kutta neural networks (RKNN’s) for
precisely modeling an ODE system in the form of x = f(x)
with an unknown f, where the state vector x is assumed
to be measured noise-free. The neural approximation of f is
used in the well-known Runge—Kutta integration formulas [10]
to obtain an approximation of x. With the designed network
structure and proposed learning schemes, the RKNN’s perform
high-order discretization of unknown ODE systems implicitly
(i.e., internally in the network) without the aforementioned
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Neural Ordinary Differential Equations

Ricky T. Q. Chen*, Yulia Rubanova*, Jesse Bettencourt*, David Duvenaud
University of Toronto, Vector Institute
{rtqichen, rubanova, jessebett, duvenaud}@cs.toronto.edu

Abstract

We introduce a new family of deep neural network models. Instead of specifying a
discrete sequence of hidden layers, we parameterize the derivative of the hidden
state using a neural network. The output of the network is computed using a black-

hav diffarantial annatinn enlvar Thaca rantinnnne_danth madele have ranctant

C. Runge. Uber die numerische Auflésung von Differentialgleichungen. Mathematische Annalen, 46:

167-178, 1895.

W. Kutta. Beitrag zur niherungsweisen Integration totaler Differentialgleichungen. Zeitschrift fiir
Mathematik und Physik, 46:435-453, 1901.
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ABSTRACT

Neural networks have the ability to serve as universal function approximators, but they are not interpretable and do not generalize well
outside of their training region. Both of these issues are problematic when trying to apply standard neural ordinary differential equations
(ODEs) to dynamical systems. We introduce the polynomial neural ODE, which is a deep polynomial neural network inside of the neural
ODE framework. We demonstrate the capability of polynomial neural ODEs to predict outside of the training region, as well as to perform
direct symbolic regression without using additional tools such as SINDy.
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FIG. 1. Example polynomial neural ODE for a chemical reaction system with
molecules A, X, and Y. The neural network outputs a polynomial transformation
of the input, which are the concentrations of the chemical species.

14



Control of Dynamical Systems using Neural Networks
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Traditional Control Theory

A dynamical system is said to be controllable if it can be steered from any
initial state x, to any target state x* in finite time T.

The goal is to minimize
T
J :/ L(x(t"),u(t"))dt’ + C(x(T))
0

subject to the constraint

x(t) = f(x(t),u(?))

16



Traditional Control Theory

A dynamical system is said to be controllable if it can be steered from any
initial state x, to any target state x* in finite time T.

integrated_cost The goal is to minimize bequest value
T
7= L) ue) dr + Cox(@)
0

subject to the constraint

x(t) = f(x(t),u(?))

17



Traditional Control Theory

* Pontryagin’s maximum principle (PMP)

_ , , Pontryagi
* Solution of the Hamilton—)acobi—Bellman (H)B) ?¥9o%r11r9y§sg)m

equation

Richard Bellman
(1920-1984%)
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Traditional Control Theory

* Pontryagin’s maximum principle (PMP)

_ , , Pontryagi
* Solution of the Hamilton—)acobi—Bellman (H)B) ?¥9o%r11r9y§sg)m

equation

How can we control high-dimensional and

Richard Bellman potentially stochastic dynamical systems?
(1920-1984)
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Lunar Lander

https:/ /www.billyvreeland.com/portfolio/2017/10/13/solving-openai-gym-nméayz
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SpaceX

https://tenor.com/view/spacex-space-gif-11007965
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Cart Pole
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Robot Arm (Reinforcement Learning)

https://bair.berkeley.edu/blog/2019/05/20/solar/
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Xu, S., Bottcher, L., & Chou, T. (2020). Diversity in biology: definitions, quantification and models. Physical Biology, 17(3), 031001.
Bottcher, L., Wald, S., & Chou, T. (2023). Mathematical Characterization of Private and Public Inmune Receptor Sequences. Bulletin of
Mathematical Biology, 85(10), 102.
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Neural ODE Controller

neural ODE controller ai(t; 6)

networked dynamical system x = f(x(t), a(¢; 0),1)

Bottcher, L., & Asikis, T. (2022). Near-optimal control of dynamical systems with neural ordinary differential equations. Machine Learning:

Science and Technology, 3, 045004.
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Neural ODE Controller

optimal solution
optimal solution

z*(T)

" =

iterative solutions
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Bottcher, L., & Asikis, T. (2022). Near-optimal control of dynamical systems with neural ordinary differential equations. Machine Learning:
Science and Technology, 3, 045004.
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An Example

Linear dynamics

1.0
x = Ax + Bu
N A= Lo and B = L
5 0.5 1 1 0 0
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I N

Bottcher, L., Antulov-Fantulin, N., & Asikis, T. (2022). Al Pontryagin or how artificial neural networks learn to control dynamical systems.
Nature Communications, 13, 333.
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An Example
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Bottcher, L., Antulov-Fantulin, N., & Asikis, T. (2022). Al Pontryagin or how artificial neural networks learn to control dynamical systems.
Nature Communications, 13, 333.



An Example

y: optimal control (OC)
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Bottcher, L., Antulov-Fantulin, N., & Asikis, T. (2022). Al Pontryagin or how artificial neural networks learn to control dynamical systems.
Nature Communications, 13, 333.
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A idinn

#  idinn: Inventory-Dynamics Control with Neural Networks View page source

idinn: Inventory-Dynamics Control with Neural
Networks

Watch on (8 YouTube

idinn implements inventory dynamics-informed neural network and other related controllers for
solving single-sourcing and dual-sourcing problems. Controllers and inventory dynamics are
implemented into customizable objects using PyTorch as backend to enable users to find the
optimal controllers for the user-specified inventory systems.

Plot Simulation

L h Te Demo

For a quick demo, you can run our Streamlit app. The app allows you to interactively train and
evaluate neural controllers for user-specified dual-sourcing systems.




Control of Microbiome Dynamics
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A First Example: Intestinal Microbiota and Clindamycin

4

n egative Barnesiella

undefined genus of Lachnospiraceae
unclassified Lachnospiraceae

Other

Blautia

undefined genus of unclassified Mollicutes
Akkermansia

Coprobacillus

undefined genus of Enterobacteriaceae
Enterococcus

Clostridium difficile

Jones, E. W., & Carlson, ). M. (2018). In silico analysis of antibiotic-induced Clostridium difficile infection: Remediation techniques and biological
adaptations. PLOS Computational Biology, 14(2), e1006001.
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A Generalized Lotka—Volterra Approach

intrinsic growth rate antibiotic susceptibility

e /

i(t) = @s(t) | b+ Y mijm;(t) + eu(t)

R T

abundance of interaction antibiotic
microbial species i coefficient treatment

Jones, E. W., & Carlson, ). M. (2018). In silico analysis of antibiotic-induced Clostridium difficile infection: Remediation techniques and biological
adaptations. PLOS Computational Biology, 14(2), e1006001.
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A Generalized Lotka—Volterra Approach

intrinsic growth rate antibiotic susceptibility

e /

i(t) = @s(t) | b+ Y mijm;(t) + eu(t)

R T

abundance of interaction antibiotic
microbial species i coefficient treatment

2™ potential equilibria

Jones, E. W., & Carlson, ). M. (2018). In silico analysis of antibiotic-induced Clostridium difficile infection: Remediation techniques and biological
adaptations. PLOS Computational Biology, 14(2), e1006001.
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A Generalized Lotka—Volterra Approach

intrinsic growth rate antibiotic susceptibility

e /

i(t) = 25(t) | b+ > mija;(t) + €ult; 0)

SN A A

abundance of interaction antibiotic treatment
microbial species i coefficient (neural ODE controller)

2™ potential equilibria

Jones, E. W., & Carlson, ). M. (2018). In silico analysis of antibiotic-induced Clostridium difficile infection: Remediation techniques and biological
adaptations. PLOS Computational Biology, 14(2), e1006001.
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Buffie, Charlie G., et al. "Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to
Clostridium difficile-induced colitis." Infection and Immunity 80.1 (2012): 62-73.

Stein, Richard R,, et al. "Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota." PLOS
Computational Biology 9.12 (2013): e1003388.
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Navigation and control of outcomes in a
generalized Lotka-Volterra model of the
microbiome

Eric W. Jones, Parker Shankin-Clarke, and Jean M. Carlson

Department of Physics, University of California at Santa Barbara, Santa Barbara
CA 93106, USA, ewj@physics.ucsb.edu

E. W. Jones, P. Shankin-Clarke, and J. M. Carlson. Navigation and control of outcomes in a generalized Lotka-Volterra model of the microbiome. In J.

Kotas, editor, Advances in Nonlinear Biological Systems: Modeling and Optimal Control, volume 11 of AIMS Series on Applied Mathematics, pages
97-120. American Institute of Mathematical Sciences, Springfield, MO, USA, 2020.
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E. W. Jones, P. Shankin-Clarke, and J. M. Carlson. Navigation and control of outcomes in a generalized Lotka-Volterra model of the microbiome. In J.
Kotas, editor, Advances in Nonlinear Biological Systems: Modeling and Optimal Control, volume 11 of AIMS Series on Applied Mathematics, pages
97-120. American Institute of Mathematical Sciences, Springfield, MO, USA, 2020.



Geometric optimal control of the generalized
Lotka-Volterra model of the intestinal microbiome

Bernard Bonnard!? | Jérémy Rouot3® | Cristiana J Silva*’

"Université de Bourgogne Franche-Comté,

Institut de Mathématiques de Bourgogne, Abstract
Dijon, France We introduce the theoretical framework from geometric optimal control for
*Inria Sophia Antipolis, Sophia Antipolis, a control system modeled by the generalized Lotka-Volterra equation, moti-

France

3Univ Brest, UMR CNRS 6205,
Laboratoire de Mathématiques de

vated by restoring the gut microbiota infected by Clostridium difficile combining

antibiotic treatment and fecal injection. We consider both permanent control

Bretagne Atlantique, Brest, France and sampled-data control related to the medical protocols.

4Iscte - Instituto Universitario de Lisboa,

Lisbon, Portugal KEYWORDS

SCenter for Research and Development in biomathematics and population dynamics, optimal control in the permanent case, sampled-data
Mathematics and Applications (CIDMA), control

Aveiro, Portugal

Bonnard, B., Rouot, J., & Silva, C. J. (2024). Geometric optimal control of the generalized Lotka-Volterra model of the intestinal microbiome. Optimal
Control Applications and Methods, 45(2), 544-574.



5 | CONCLUSION

In this article, we have presented mainly the techniques from geometric control theory to analyze reduction of the infec-
tion of a gut microbiote by a pathogenic agent using a controlled Lotka-Volterra model in dimension N = 11, which can
admit up to 2! = 2048 interacting equilibria.

In the optimal control context the problem can be analyzed combining indirect or direct schemes in the permanent

or sampled-data control frame both aspects are complementary. They were applied to the 2d-case but can be generalized
to the N-dimensional case, the limit being the computational complexity.

Bonnard, B., Rouot, J., & Silva, C. J. (2024). Geometric optimal control of the generalized Lotka-Volterra model of the intestinal microbiome. Optimal
Control Applications and Methods, 45(2), 544-574.
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[ Barnesiella 7 Blautia O difficile

und. Lachnospiraceae und. Mollicutes FEnterococcus
" uncl. Lachnospiraceae ~ Akkermansia und. Enterobacteriaceae
~ Other Coprobacillus
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Bottcher, L., Control of dynamical systems with neural networks, preprint
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[ Barnesiella 7 Blautia O difficile

und. Lachnospiraceae und. Mollicutes FEnterococcus
" uncl. Lachnospiraceae ~ Akkermansia und. Enterobacteriaceae
~ Other Coprobacillus
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Bottcher, L., Control of dynamical systems with neural networks, preprint



Multiple Species and Substrates

abundance of
growth rate microbial species i

-

zj:( +/€(w> — ke 25(t) — D ai(t)

i

Monod constant decay rate  dilution rate

44



Multiple Species and Substrates

abundance of
growth rate microbial species i

-

kxz _szt)
= |2 (55 +/K)

i

Monod constant decay rate  dilution rate

$j(t) = Z (bij ri(t) — a;jri 3j<ts)j$>K@'j xi(t)) + D(s05 — 55(1))

»i

production rate consumption rate substrate inflow
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Multiple Species and Substrates

abundance of
growth rate microbial species i

-

zj:( +/£(w) — k;xi(t) — Dx;i(t)

/ / potential controls
probiotics, nutrients, antibiotics,

Monod constant decay rate  dilution rate fecal transplant

$;(t) = XZ: (/27;7‘ zi(t) — }ij i <:)j$>KM ﬂfz‘(t)) + D(so; — s;(t))

production rate consumption rate substrate inflow
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From Bioreactor Data to Parameter Inference and

Control

Bioreactor experiments

Parameter inference

Biomass Dynamics

1231 X = BT counts (model)
& 1.00 1 X BT counts (data)

ss [x10'

iom

0 20 40 60 80 100 120
Time (hours)

Biomass [x10°]

o
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e
o
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1

o
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|

Control

Biomass Dynamics (Controlled)

=
o
. |

= BT counts (model)

20 40 60 80 100 120
Time (hours)

)
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Biomass [x10°]

1.2 A

1.0 A

0.8 A

0.6 A

0.4 -

0.2 -

0.0 A

= BT counts (model)
X BT counts (data)

3

x

20

40

60
Time (hours)

80

100

120

Basic setup:

1) Monitoring the biomass of one
bacterial species (Bacteroides
thetaiotaomicron) and of six
substrates

2) Inferring model parameters

3) Controlling model dynamics

4) Validation of control function in
another bioreactor experiment
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Biomass [x10°]
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* Control objective is to increase
biomass while keeping the inflow of
glucose at a minimum
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* The larger biomass is associated

with a larger production of acetate,
succinate, and other substrates.
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Contributions

* Efficient control of high-dimensional dynamical systems (both deterministic
and stochastic)
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Contributions

* Efficient control of high-dimensional dynamical systems (both deterministic
and stochastic)

* Up to 100x faster runtime with improved numerical stability vs. PMP-based
control methods
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Contributions

Efficient control of high-dimensional dynamical systems (both deterministic
and stochastic)

Up to 100x faster runtime with improved numerical stability vs. PMP-based
control methods

Promising results in biomedical applications
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