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System Identification using Neural Networks
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Learning a Dynamical System

Basic idea: Represent the right-hand side of 
an ordinary differential equation by an 
artificial neural network (or another 
universal function approximator) with 
parameters 

training/observational data

analytical solution
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Learning a Dynamical System

Example: We consider the following 
dynamical system

with initial condition 

training/observation data

analytical solution
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Learning a Dynamical System

input layer hidden layers output layer
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Learning a Dynamical System

Euler cell

Figure courtesy:  Krishnapriyan, Aditi S., et al. "Learning continuous models for continuous physics." arXiv preprint arXiv:2202.08494 (2022).

Solve                             using a 
numerical integration method 
(e.g., Euler’s method):
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Learning a Dynamical System

Euler cell RK4 cell

Figure courtesy:  Krishnapriyan, Aditi S., et al. "Learning continuous models for continuous physics." arXiv preprint arXiv:2202.08494 (2022).
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Learning a Dynamical System

10 training epochs 100 training epochs 1000 training epochs

Neural ODE
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Control of Dynamical Systems using Neural Networks
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A dynamical system is said to be controllable if it can be steered from any 
initial state x0 to any target state x* in finite time T.

The goal is to minimize

subject to the constraint

Traditional Control Theory
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A dynamical system is said to be controllable if it can be steered from any 
initial state x0 to any target state x* in finite time T.

The goal is to minimize

subject to the constraint

Traditional Control Theory

bequest valueintegrated cost
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Traditional Control Theory

 Pontryagin’s maximum principle (PMP)

 Solution of the Hamilton—Jacobi—Bellman (HJB) 
equation 

Lev Pontryagin
(1908–1988)

Richard Bellman
(1920–1984)
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Traditional Control Theory

How can we control high-dimensional and 
potentially stochastic dynamical systems?

 Pontryagin’s maximum principle (PMP)

 Solution of the Hamilton—Jacobi—Bellman (HJB) 
equation 

Lev Pontryagin
(1908–1988)

Richard Bellman
(1920–1984)



 

  

20

Lunar Lander

https://www.billyvreeland.com/portfolio/2017/10/13/solving-openai-gym-nm4yz

https://www.billyvreeland.com/portfolio/2017/10/13/solving-openai-gym-nm4yz
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SpaceX

https://tenor.com/view/spacex-space-gif-11007965

https://tenor.com/view/spacex-space-gif-11007965
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Cart Pole

https://www.billyvreeland.com/portfolio/2017/10/13/solving-openai-gym-nm4yz

https://www.billyvreeland.com/portfolio/2017/10/13/solving-openai-gym-nm4yz
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Robot Arm (Reinforcement Learning)

https://bair.berkeley.edu/blog/2019/05/20/solar/

https://bair.berkeley.edu/blog/2019/05/20/solar/
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birth-death-immigration processes at different scales

Xu, S., Böttcher, L., & Chou, T. (2020). Diversity in biology: definitions, quantification and models. Physical Biology, 17(3), 031001.
Böttcher, L., Wald, S., & Chou, T. (2023). Mathematical Characterization of Private and Public Immune Receptor Sequences. Bulletin of 
Mathematical Biology, 85(10), 102.
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Neural ODE Controller

Böttcher, L., & Asikis, T. (2022). Near-optimal control of dynamical systems with neural ordinary differential equations. Machine Learning: 
Science and Technology, 3, 045004.
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Neural ODE Controller

Böttcher, L., & Asikis, T. (2022). Near-optimal control of dynamical systems with neural ordinary differential equations. Machine Learning: 
Science and Technology, 3, 045004.

optimal solution

optimal solution

iterative solutions iterative solutions
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Linear dynamics

Loss function

An Example

Böttcher, L., Antulov-Fantulin, N., & Asikis, T. (2022). AI Pontryagin or how artificial neural networks learn to control dynamical systems. 
Nature Communications, 13, 333.
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An Example

Böttcher, L., Antulov-Fantulin, N., & Asikis, T. (2022). AI Pontryagin or how artificial neural networks learn to control dynamical systems. 
Nature Communications, 13, 333.
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An Example
optimal control (OC)

neural network

Böttcher, L., Antulov-Fantulin, N., & Asikis, T. (2022). AI Pontryagin or how artificial neural networks learn to control dynamical systems. 
Nature Communications, 13, 333.
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Further Examples
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Control of Microbiome Dynamics
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A First Example: Intestinal Microbiota and Clindamycin

Jones, E. W., & Carlson, J. M. (2018). In silico analysis of antibiotic-induced Clostridium difficile infection: Remediation techniques and biological 
adaptations. PLOS Computational Biology, 14(2), e1006001.

negative

positive
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A Generalized Lotka—Volterra Approach

Jones, E. W., & Carlson, J. M. (2018). In silico analysis of antibiotic-induced Clostridium difficile infection: Remediation techniques and biological 
adaptations. PLOS Computational Biology, 14(2), e1006001.

abundance of 
microbial species i

intrinsic growth rate

interaction
coefficient

antibiotic susceptibility

antibiotic
treatment
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A Generalized Lotka—Volterra Approach

Jones, E. W., & Carlson, J. M. (2018). In silico analysis of antibiotic-induced Clostridium difficile infection: Remediation techniques and biological 
adaptations. PLOS Computational Biology, 14(2), e1006001.

abundance of 
microbial species i

intrinsic growth rate

interaction
coefficient

antibiotic susceptibility

antibiotic
treatment

potential equilibria
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A Generalized Lotka—Volterra Approach

Jones, E. W., & Carlson, J. M. (2018). In silico analysis of antibiotic-induced Clostridium difficile infection: Remediation techniques and biological 
adaptations. PLOS Computational Biology, 14(2), e1006001.

abundance of 
microbial species i

intrinsic growth rate

interaction
coefficient

antibiotic susceptibility

antibiotic treatment
(neural ODE controller)

potential equilibria
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Buffie, Charlie G., et al. "Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to 
Clostridium difficile-induced colitis." Infection and Immunity 80.1 (2012): 62-73.
Stein, Richard R., et al. "Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota." PLOS 
Computational Biology 9.12 (2013): e1003388.
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E. W. Jones, P. Shankin-Clarke, and J. M. Carlson. Navigation and control of outcomes in a generalized Lotka–Volterra model of the microbiome. In J. 
Kotas, editor, Advances in Nonlinear Biological Systems: Modeling and Optimal Control, volume 11 of AIMS Series on Applied Mathematics, pages 
97–120. American Institute of Mathematical Sciences, Springfield, MO, USA, 2020.
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E. W. Jones, P. Shankin-Clarke, and J. M. Carlson. Navigation and control of outcomes in a generalized Lotka–Volterra model of the microbiome. In J. 
Kotas, editor, Advances in Nonlinear Biological Systems: Modeling and Optimal Control, volume 11 of AIMS Series on Applied Mathematics, pages 
97–120. American Institute of Mathematical Sciences, Springfield, MO, USA, 2020.
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Bonnard, B., Rouot, J., & Silva, C. J. (2024). Geometric optimal control of the generalized Lotka–Volterra model of the intestinal microbiome. Optimal 
Control Applications and Methods, 45(2), 544-574.
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Bonnard, B., Rouot, J., & Silva, C. J. (2024). Geometric optimal control of the generalized Lotka–Volterra model of the intestinal microbiome. Optimal 
Control Applications and Methods, 45(2), 544-574.
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Böttcher, L., Control of dynamical systems with neural networks, preprint
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Böttcher, L., Control of dynamical systems with neural networks, preprint
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Multiple Species and Substrates
abundance of 

microbial species igrowth rate

Monod constant decay rate dilution rate
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Multiple Species and Substrates
abundance of 

microbial species igrowth rate

Monod constant decay rate dilution rate

production rate consumption rate substrate inflow
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Multiple Species and Substrates
abundance of 

microbial species igrowth rate

Monod constant decay rate dilution rate

production rate consumption rate substrate inflow

potential controls
probiotics, nutrients, antibiotics, 

fecal transplant
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From Bioreactor Data to Parameter Inference and 
Control

Parameter inference ControlBioreactor experiments
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Basic setup:

1) Monitoring the biomass of one 
bacterial species (Bacteroides 
thetaiotaomicron) and of six 
substrates

2) Inferring model parameters

3) Controlling model dynamics

4) Validation of control function in 
another bioreactor experiment
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● Control objective is to increase 
biomass while keeping the inflow of 
 glucose at a minimum

● The larger biomass is associated 
with a larger production of acetate, 
succinate, and other substrates.
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Microbiome Project Team

 Karoline Faust (KU Leuven)

 Pallabita Saha (KU Leuven)

 Lorenzo Sala (INRAE Jouy-en-Josas)

 Didier Gonze (Université Libre de Bruxelles)

 Indrah Thelaganathan (FS)
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● Efficient control of high-dimensional dynamical systems (both deterministic 
and stochastic)

Contributions
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● Efficient control of high-dimensional dynamical systems (both deterministic 
and stochastic)

● Up to 100× faster runtime with improved numerical stability vs. PMP-based 
control methods

Contributions
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● Efficient control of high-dimensional dynamical systems (both deterministic 
and stochastic)

● Up to 100× faster runtime with improved numerical stability vs. PMP-based 
control methods

● Promising results in biomedical applications

Contributions
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● L. Böttcher, T. Asikis, I. Fragkos, Control of dual-sourcing inventory systems using recurrent neural networks, INFORMS Journal on Computing 35, 
1308-1328 (2023)
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